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Abstract The importance of cassava as the fourth largest
source of calories in the world requires that contributions of
biotechnology to improving this crop, advances and current
challenges, be periodically reviewed. Plant biotechnology of-
fers a wide range of opportunities that can help cassava be-
come a better crop for a constantly changing world. We there-
fore review the state of knowledge on the current use of bio-
technology applied to cassava cultivars and its implications
for breeding the crop into the future. The history of the devel-
opment of the first transgenic cassava plant serves as the basis
to explore molecular aspects of somatic embryogenesis and
friable embryogenic callus production. We analyze complex
plant-pathogen interactions to profit from such knowledge to
help cassava fight bacterial diseases and look at candidate
genes possibly involved in resistance to viruses and white-
flies—the two most important traits of cassava. The review
also covers the analyses of main achievements in transgenic-
mediated nutritional improvement and mass production of
healthy plants by tissue culture and synthetic seeds. Finally,
the perspectives of using genome editing and the challenges
associated to climate change for further improving the crop are
discussed. During the last 30 yr, great advances have been
made in cassava using biotechnology, but they need to scale
out of the proof of concept to the fields of cassava growers.
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Introduction

Cassava (Manihot esculenta subspecies esculenta Crantz;
Euphorbiaceae) is native to the South American tropics
were its closest wild relative M. esculenta ssp. flabellifolia
(Pohl) has been reported and studied to determine its de-
gree of relationship with cultivated cassava (Olsen and
Schaal 1999; Léotard et al. 2009). Since its introduction
in West Africa by Portuguese sailors in the sixteenth cen-
tury, cassava expanded throughout the tropics, especially in
sub-Saharan Africa, India, the Philippines, and Indonesia,
where today it represents a source of food and income for
over 800 million people worldwide. The importance of
cassava as a food and industrial crop relies on its roots
since they accumulate starch (approximately 30–60% dry
matter), and so, it is considered the second source of starch
globally, after maize (FAO 2013). Cassava can be grown in
marginal soils, typical of low-income, small-scale farmers,
with minimum input and without the need of predictable
rainfall.

The average yield of cassava worldwide is only 12–
13 tons/ha, but its potential yield under optimal conditions is
almost seven times larger (80 tons/ha; FAO 2013). According
to FAO statistics (FAOSTAT 2015), cassava world production
raised to >263 million tons in 2013, a 27% increase in pro-
duction during the last 10 yr. From these, Asia contributed
33.5% (88.2 million tons), Africa 54.8% (144.2 million),
and the Americas 11.6% (30.5 million tons). Among these
three regions, Asia holds the highest average yield per hectare
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at 21.1 tons, still far from its true yield potential, followed by
the Americas (12.3 tons) and Africa (8.3 tons). Thus, this trend
indicates that Asia will continue growing in production and
yield, while Africa, constrained mostly by viral diseases that
affect the crop severely, is likely to increase the area of plant-
ing in the coming years. Meanwhile, production and yield in
the Americas seems to be going downwards, mainly as a result
of uncompetitive production costs. Besides having cheaper
human labor costs, Asia set up the growing production trend
by adopting high-yielding, high-starch cassava varieties, and
better agronomic practices for fertilization and soil protection
that resulted in very competitive production costs and higher
per-capita consumption in the region. With the European and
Chinese markets secured, and the world population growing at
the actual pace—Africa’s population is expected to double to
2.4 billion for 2050, the prospects for cassava’s increase in
production are therefore very promising in Asia and Africa.
In spite of yield constrains in Africa, Nigeria is still the major
cassava world producer with 47.4 million tons in 2013,
followed by Thailand (30.2) and Indonesia (23.9). The roots
of cassava can be harvested as early as 8 mo, and rarely as late
as 14–16 mo after planting, although ideally roots are harvest-
ed within the 12 mo following seeding. Thailand, Vietnam
and India have specialized in the production and processing
of cassava for animal feed, with the European countries being
the main consumers, followed closely by China that today is
the main importer of dried cassava and starch (FAO 2013).
China and Thailand, on the other hand, are realizing the po-
tential of cassava for the production of bioethanol, a relatively
new role for the crop that holds great promise (Nguyen et al.
2007; Jansson et al. 2009; Cortés-Sierra et al. 2010).

Clonal propagation of cassava facilitates the free exchanging
of stems between farmers for planting, yet it also facilitates the
spread of diseases, especially bacteria, fungi, phytoplasmas (my-
coplasma-like organisms), and insects hosting harmful viruses
that cause two of the most cassava’s devastating diseases: cas-
sava mosaic disease (CMD) and cassava brown streak disease
(CBSD; reviewed in Legg et al. 2014). The first efforts to incor-
porate biotechnology as a tool for improving cassava took place
some 30 yr ago, possibly with the discovery of regeneration
through somatic embryogenesis and clonal propagation
(Stamp and Henshaw 1982; Szabádos et al. 1987). But, the truth
is that cassava farmers are still lacking genetically modified
(GM) varieties to help them overcome the many hurdles for its
cultivation. Those GMvarieties already exist, below, but are still
at the proof-of-concept stage, in the field-testing phase, possibly
to make sure that transgenic traits persist in time. The purpose of
these comments is to encourage optimism among farmers, con-
sumers, and/or researchers regarding their expectations for bio-
technological solutions for cassava. Many optimistic cassava
scientists still pursue GM varieties and, as it will be described
below, there are encouraging cases in which significant progress
has been made. As examples, biotechnology applied to the

control of virus diseases, in vitro propagation, synthetic seed
production, and the enhancement of the roots´ nutritional value
will be discussed. These cases all have the potential to provide a
biotechnological solution for the improvement of cassava. This
approach has been recognized and reviewed in the recent past
(i.e., Fregene and Puonti-Kaerlas 2002; Taylor et al. 2004; Liu
et al. 2011).

History of the first transgenic cassava plant Genetic trans-
formation of cassava (M. esculentaCrantz) using Agrobacterium
tumefaciens or particle bombardment as gene-delivery systems is
a reality aftermore than 25 yr of continuous efforts of several labs
worldwide. With both systems, it has been possible to obtain
transgenic plants of cassava expressing marker and selectable
genes, as well as genes of agronomic interest. However,
Agrobacterium-mediated transformation (Agrotrans) of cassava
has been the technology of choice because it is more easily
accessed by national agricultural research programs (NARPs)
in developing countries, where ultimately, transgenic cassava
landraces with novel traits are most needed. Agrotrans produces
fewer and cleaner insertions of transfer DNAs (T-DNAs), which
facilitates the safe release and commercialization of transgenic
plants. The reader is encouraged to check the following publica-
tions if interested in transformation of cassava using micro-
particle bombardment: Schöpke et al. (1996); Raemakers et al.
(1996); Zhang et al. (2000), and Zhang and Puonti-Kaerlas
(2000).

Although the first genetic transformations of cassava using
Agrobacterium were published in 1996 (Li et al. 1996;
Raemakers et al. 1996; Schöpke et al. 1996), much work
was done prior to these reports, especially at the
International Center for Tropical Agriculture (CIAT) and at
the Vrije Universiteit Brussel. The pioneering experiments
that culminated with the production of the first transgenic
cassava calli, expressing selectable and useful genes, were
developed towards the end of the 1980s by (Calderon-Urrea
1988). In these experiments, Calderón-Urrea transformed
somatic embryos from the cultivar Mcol1505 with several
A. tumefaciens strains to introduce resistance to the herbi-
cide phosphinothricin (PPT; commercially known as
Basta® or Finale®) using the bar gene. Additionally, the
uidA gene for β-glucuronidase expression, also known as
GUS gene, was introduced. The presence of these genes in
calli was demonstrated by Southern blot analysis. Thus, this
was the first demonstration, at the phenotypic and molecu-
lar level, of the expression of foreign bacterial genes in
cassava cells. At the beginning of the 90´s another series
of transformation experiments were initiated using a wild
type Agrobacterium strain, named CIAT-1182, isolated
from cassava plants grown in the field (Sarria et al. 1993),
to introduce the same bar gene (plasmid pGV1040 from
PGS) into somatic-embryo-derived cotyledons (SEDCs;
Arias-Garzón and Sarria 1995) of the cultivar MPer183.
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Several putatively transgenic lines (based on GUS expres-
sion and PCR tests and PPT selection) were rescued, al-
though only in one of them (line 53-5.2), the insertion of
the T-DNA in at least three different sites was proved at the
molecular level. Basta® spraying of plants in the green-
house showed that line 53-5.2 was highly resistant to the
herbicide. Thus, the first transgenic plants of cassava were
so established, expressing a gene of potential commercial
use. Roca’s transformation team at CIAT first announced
their results at the second meeting of the Cassava
Biotechnology Network (CBN), held in Indonesia in
August of 1994 (Sarria et al. 1995), and then published
them in a peer-reviewed journal in 2000 (Sarria et al. 2000).

More recently, cassava has been transformed with bacteria
different than Agrobacterium named Ensifer adhaerens OV14.
It contains chromosomal genes homologous to virulence genes
of Agrobacterium (Rudder et al. 2014) and was identified in
1982 as a gram-negative, predatory bacterium, inhabiting the
rhizosphere with the ability to transfer genes into several plants,
i.e., potato, tobacco, Arabidopsis, Solanum, and rice (Casida
1982; Wendt et al. 2012; Soto et al. 2015). Apparently, Ensifer
seemed to be less virulent and pathogenic than Agrobacterium
and therefore was considered an ideal vector to produce clean
and unique insertions into plants (Rudder et al. 2014; Zúñiga-
Soto et al. 2015). The Genetic Transformation Platform at CIAT
used E. adhaerens strain OV14 with plasmid pCAMBIA5105
to transform cassava cv. 60444, based on the protocol reported
by Zúñiga-Soto et al. (2015) for rice. Three transgenic indepen-
dent lines were confirmed by Southern blot as having one insert
(two lines) or four copies of the T-DNA (Fig. 1). Expression of
the GUS gene was evident in the single-copy events. In all
transgenic plants, the appearance of nodules in roots was clearly
visible (Fig. 1), an observation previously made by Rogel et al.
(2001). Thus, cassava entered the list of crops that can also be
transformed with Ensifer adaherens.

Molecular aspects of somatic embryogenesis and friable
embryogenic callus induction: implications in genetic
transformation and genome editing Since the first reports
on cassava transformation during the early 1990s (i.e., Sarria

et al. 1993; 1995; Schöpke et al. 1993), the development of
transgenic technologies has emerged as a promising strategy
for improving the crop by overcoming limitations related to
conventional breeding and accelerating the incorporation of
agronomic characteristics (Fregene and Puonti-Kaerlas 2002;
Taylor et al. 2002). However, several constraints still remain,
which prevent applying these biotechnological approaches to
farmer and industry-preferred landraces. One of the principal
limitations is related to the production of friable embryogenic
callus (FEC), the target tissue most efficient and widely used in
cassava genetic modification to date (Taylor et al. 1996; Bull
et al. 2009; Liu et al. 2011). Producing FEC is the result of an
arduous process that involves about 4 to 6mo, depending upon
genotype and tissue culturist’s experience. It includes a series
of steps including: propagation of in vitro plant material, pri-
mary somatic embryogenesis (SE) induction, secondary cyclic
SE and FEC induction, isolation and purification through a
continuous subculturing process (Bull et al. 2009; Taylor
et al. 2012). Embryogenic material is induced by culturing
embryogenic-competent tissue such as immature leaf lobes or
axillary buds. The culture medium is commonly supplemented
with auxins, mainly picloram. FEC is induced by transferring
the organized embryogenic structures (OES) onto Gresshoff
and Doy (Gresshoff and Doy 1974) DBM2 medium supple-
mented with 50 μMpicloram (Taylor et al. 1996). Even though
all this process has been well established for the model bench-
mark genotype 60444, their applicability to other cultivars has
been limited because FEC generation is strongly genotype-
dependent, meaning that embryogenic efficiency varies signif-
icantly between genotypes (Liu et al. 2011). During the last
6 yr the development of more robust and efficient transforma-
tion protocols for 60444 (Bull et al. 2009; Taylor et al. 2012)
has represented the starting point to incorporate more cassava
landraces into pipelines for genetic modification (Table 1).
This has required modifying protocols to overcome constraints
like limited amount and low-quality FEC, wide variation in
recovery and proliferation time on selective media, and the
extremely time-consuming purification of new FEC from fria-
ble, non-embryogenic callus (Zainuddin et al. 2012; Chetty
et al. 2013; Nyaboga et al. 2013).

a b c

Figure 1. (a) Transgenic somatic embryos and (b) plant of cassava cv.
60444 transformed with Ensifer adaherens OV14, expressing GUS.
Note the formation of nodules on roots (arrows). This event was one of

the three obtained for which a Southern blot (c), confirmed the presence
of single copy insertions (first and third lanes) as well as multicopies of
the T-DNA (second lane; fourth lane is control transgenic plant).
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More recently, researchers have managed to produce ge-
netic transformation using FEC in cultivars different than
60444, including African farmer- and industry-preferred land-
races such as TME3, TME7, TME14, TME204, T200,
Ebwanatereka, Kibandameno, and Serere (Vanderschuren
et al. 2012; Zainuddin et al. 2012; Chetty et al. 2013;
Nyaboga et al. 2013, 2015; Chauhan et al. 2015). This is
encouraging but still represents only a small fraction of the
more than 5000 varieties recognized for cassava (Salvador

et al. 2014). Nonetheless, not only obtaining FEC represents
a hurdle, also FEC’s dividing capacity is critical to produce
large amounts of tissue to ensure the production of enough
transgenic lines (Hankoua et al. 2006; Zainuddin et al. 2012).
Additionally, the subculturing process for FEC proliferation
generates high levels of somaclonal variation due to extended
exposure to auxin. This in turn produces changes in the en-
dogenous hormone metabolism (Raemakers et al. 2001;
Taylor et al. 2001; Bull et al. 2009), which constitutes a

Table 1. Transgenic cassava
cultivars reported since 2010 for
which genes expressing traits of
interest for producers and/or
consumers, other than marker and
selectable genes, have been
introduced

Source Cassava
genotypes

Traits of interest (genes)

Welsch et al. (2010) 60444 Biofortified β-carotene (crtB)

Bonilla (2010) 60444 Biofortified β-carotene (crtB, crtI, crtY)

Zhang et al. (2010) 60444 Leaf retention (senescence-inducible ipt)

Zhao et al. (2011) 60444 Waxy starch (RNAi GBSSI)

Yadav et al. (2011) 60444 CBSVD (RNAi FL-CP)

Narayanan et al. (2011) 60444 Protein content/cyanogenic content (HNL)

Taylor et al. (2012) 60444 RNAi CMD (ACMV/EACMV); CBSD (n.d.)

Ihemere et al. (2012) 60444z Iron biofortification (FEA1)

Vanderschuren et al. (2012) TME7
(Oko-Iyawo)

CMVand CBSV resistance (RNAi-CBSV
coat protein)

Koehorst-van Putten
et al. (2012)

Adira4 Waxy starch (RNAi-GBSSI)

Ogwok et al. (2012) 60444 UCBSV resistance (siRNA-UCBSV
coat protein)

Failla et al. (2012) 60444 Biofortified β-carotene (crtB and DXS)

Odipio et al. (2014) 60444 UCBSV resistance (RNAi-UCBSV
coat protein)

Ntui et al. (2015) KU50z Resistance to Sri Lankan CMV (AV2 and
AV1 coat proteins)

Narayanan et al. (2015) TME 204 Iron biofortification (AtVIT1)

Chauhan et al. (2015) TME 204,
TME7, 60444

Resistance to CBSVand UCBSV, increase
carotene content in roots

Li et al. (2015) 60444 Biofortified vitamin B6 (AtTDX1.1 and
AtTDX2)

CIAT 2015 (this review)y 60444, SM1219-9 Centromere-engineering for haploid
induction and herbicide (PPT)
tolerance (RNAi-CENH3 and
modified versions of CENH3
plus bar)x; tolerance
to PPD (root-specific SOD)w;
resistance to Xanthomonas
(RNAi-RXam1)v; stomatal opening
(guard cell-specific AtAHA2);
flowering induction
(phloem-specific Hd3a from rice)

Other reports on transgenic cassavas previous to 2010 were reviewed by Liu et al. (2011)
z Cultivars transformed using SEDCs rather than FEC
yOver 260 Southern-positive, transgenic lines have been produced, some currently on field trials
or in the greenhouse
x In collaboration with A. Britt, UC-Davis, USA
w In collaboration with P. Beyer, Univ. of Freiburg, Germany
v In collaboration with C. López, Univ. Nacional de Colombia
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problem because it impacts negatively the plant conversion
ability of embryos and the morphology of regenerated plants.
Thus, labs are forced into the staggered and continuous pro-
duction of fresh FEC lines almost monthly, which is expensive
time and manpower wise.

The production of FEC for the elite Asian line Kasetsart
University 50 (KU50), the most widely grown in Asia for
biofuel production (Ntui et al. 2015), has not been well docu-
mented to our knowledge. Ma et al. (2015) stated that it was
actually produced with low efficiency, probably meaning that
induction of the primordial FEC was possible but its prolifer-
ation may not be possible. Researchers at CIAT have made
similar observations by developing KU50’s FEC primordia on
media containing tyrosine, but cell division slowed after the
first FEC purification steps (unpublished). This may be one of
the reasons why KU50 has been transformed using SEDCs
instead of FEC (Ntui et al. 2015).

Until now, the approaches used to produce FEC in new
cassava varieties has focused on identifying the correct media
composition. For example, including amino acids like L-tyro-
sine in the culture medium resulted in the production of FEC
for several African cultivars (Nyaboga et al. 2013; Chauhan
et al. 2015). The use of DKW/Juglan’s salts (Driver and
Kuniyuki 1984) enhanced somatic embryogenesis in the cul-
tivars TME14 and TME204 (Chauhan et al. 2015; Nyaboga
et al. 2015). Decreasing auxin concentration improved somat-
ic embryo differentiation in the African variety Ebwanatereka
(Apio et al. 2015). On the other hand, the efficiency of trans-
formation of FEC has also been improved by modifying the
optical density of Agrobacterium or by adding cephalosporins
prior to inoculation with bacteria (Chauhan et al. 2015). Thus,
modifications in either tissue culture components, physical
treatments like hovering OES (Taylor et al. 2012) and changes
in Agrobacterium density have been useful to expand the pro-
duction and transformation of FEC to more genotypes.

Nevertheless, due to the high heterozygosity of cassava,
and given the high variation in FEC production, the develop-
ment of standard SE protocols for each genotype constitutes a
laborious and time-consuming task that requires well-trained
tissue culturists, large amounts of plant material, media,
chemicals, and infrastructure (Bull et al. 2011; Zainuddin
et al. 2012). All the above requirements may generate yield
gaps for technology transfer, e.g., to laboratories in develop-
ing countries where cassava is a staple food and source of
income.

The molecular mechanisms behind FEC production are just
being elucidated. The recent publication by Ma et al. (2015)
made a robust analysis at histologically, metabolic, epigenetic,
and expression-profiling levels of FEC formation to identify the
molecular regulatory networks involved. This research found a
wide set of differentially expressed genes in FEC samples re-
lated to SE. It also linked the decrease in DNAmethylation, the
upregulation of cell cycle-related genes, and the change in

expression of certain transcription factors to the high
somaclonal variation observed in long-termed, subcultured
FEC.

The use of embryogenesis marker genes (EMGs) for induc-
ing SE to transform cassava has not been explored yet.
Controlling the expression of EMGs may be an alternative
to regenerate SE after transforming tissues, thus overcoming
the limitation to produce FEC. In different plant species, it has
been shown that overexpression of certain EMGs can lead to
the formation of somatic embryos in vegetative cells (Ikeuchi
et al. 2013). However, little is known about the molecular
mechanisms of somatic or zygotic embryogenesis in cassava.
No studies have been published describing key EMGs. In
general, it is well known that in vitro SE in plants is affected
by a large set of conditions including genotypes, explant
types, general in vitro settings, and plant growth regulators
(PGR), among other factors (Zimmerman 1993; Mordhorst
et al. 1997). Altogether, they create the inducing environment
that triggers the embryogenic process leading to the dediffer-
entiation of somatic cells, followed or paralleled by the reac-
quisition of developmental totipotency (reviewed by Feher
2015). This process is highly regulated by genetic and epige-
netic mechanisms, the latter being responsible for changing
the overall expression of genes, integrating stress with hor-
monal and developmental pathways (Ikeuchi et al. 2013;
Feher 2015).

As a first approach to understand SE in cassava, Baba et al.
(2008) used histology to show that somatic embryos can be
produced from procambium vascular tissue, which constitutes
a region hosting competent embryogenic cells with highmitotic
activity. They also identified a set of proteins expressed in so-
matic tissues undergoing secondary SE that were involved in a
wide range of metabolic functions. However, up to date, there is
no report of a molecular approach seeking embryogenesis-
specific regulatory genes in cassava. Recently, CIAT started
working on the identification and characterization of
Arabidopsis LEAFY COTYLEDON 1 (LEC1) and LEC2
orthologous genes in the genotype 60444. These transcription
factors (TFs) are considered master regulators of embryogene-
sis due to their multifunctional role in SE. They induce other
transcription factors and proteins that control developmental
and metabolic pathways (reviewed by Braybrook and Harada
2008). CIAT’s preliminary results indicate that LEC TFs can-
didate genes have a highly conserved molecular function in
cassava and are probably involved in the transition from a so-
matic to an embryonic state (Brand et al. 2016).

Efforts to elucidate EMGs are not unique to cassava. It
is also the approach for cocoa. BABY BOOM (TcBBM),
a transcription factor, is being used to enhance SE follow-
ing transient expression promoting clonal propagation of
elite varieties while improving regeneration of cocoa
transgenic plants (Florez et al. 2015). However, what is
known from Arabidopsis is that SE is a complex, well-
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coordinated process wherein several factors are involved;
therefore, it is likely that more than one EMG will be
required for manipulating SE.

Somatic embryogenesis, the underlying mechanism of
FEC induction, has been one of the most successful biotech-
nological tools used for genetic modification and large-scale
propagation of crops. In the case of cassava, FEC has led the
way to address questions about crop biology and breeding
through proof of concept experiments. Using FEC has the
advantage of preserving the heterozygosity of cassava, main-
taining desired characteristics, with exceptions (see the fol-
lowing section). For most traits evaluated in the field, SE does
not seem to generate undesirable variability.

From a biotechnological perspective, a deep understanding
of SE and FEC production represents a challenge to improve
methods for cassava transformation, but certainly it will not be
the only way for breeding cassava using biotechnology.
Currently, the new genome editing tools, like the CRISPR-
Cas9 system (Osakabe and Osakabe 2014), represents a mile-
stone not only for highly specific and efficient genome edition
but also for the possibility of generating modified/edited
plants which bypass the overwhelming regulation for trans-
genics (Waltz 2016). The new perspective focuses on
obtaining products without foreign DNA such as selection
marker genes, e.g., for resistance to antibiotics and/or herbi-
cides, or sequences from viruses and bacteria. Thus, new ap-
proaches in genetic modification and gene editing introduce
preassembled CRISPR-Cas9-sgRNA, a ribonucleoprotein, in-
to plant protoplasts to edit genes (Woo et al. 2015), avoiding
using Agrobacterium as vector to deliver DNA. Even if foreign
DNA was introduced using vectors, the cassette containing
Cas9 and guide-RNAs can be segregated out of the edited
plants in the following generation. This is commonly the case
for rice, but not for cassava where sexual reproduction changes
the genotype due to recombination. Then, protoplasts should
be used if editing is the focus. A protocol for isolation and
regeneration of protoplast has been already described since
the 1990s (Sofiari et al. 1998), which opens the way for testing
genome editing in cassava using the CRISPR-Cas9 system.

Resistance to viruses and whiteflies In the case of transgenic
resistance to viral diseases, this review does not ignore the
tremendous amount of research done to understand how
RNAi-mediated resistance would work in cassava, particular-
ly approaches involving posttranscriptional silencing of Coat
Protein (CP) genes, or the AC1 (Rep), AC2 (TrAP), or AC3
(REn) genes implicated in replication of viral DNAs, in the
model cassava genotype 60444 (reviewed by Liu et al. 2011).
Some of these studies are referenced in Table 1, for example,
Vanderschuren et al. (2012), among others. However, the fol-
lowing text emphasizes cases where the same or similar strat-
egies have been applied to produce transgenic landraces or
elite lines that, for obvious reasons, have tremendous value

for cassava farmers, especially in Africa and Asia. It is worth
clarifying that some authors consider the genotype 60444 a
West African cultivar (Taylor et al. 2012); therefore, it was
included in Table 1.

Like most transgenic crops, the genetic transformation of
cassava has been limited by the difficulty in efficient produc-
tion of transgenic landraces expressing genes of interest. In
terms of landrace-specific protocol development to produce
transgenic lines for field-testing, the progress seems moderate
though important. This indicates that researchers have been
able to reduce the recalcitrance of the crop to transformation
and regeneration, to the point that transgenic lines of farmer-
preferred cultivars have even reached field trials. As an exam-
ple, the transgenic cassava landrace Adira4, with waxy starch,
was the first tested in Indonesian fields, probably several years
before it was actually published (Koehorst-van Putten et al.
2012). The transgenic cassava genotype that held promise
was a Nigerian landrace, naturally resistant to CMD called
TME7, for which engineered resistance to cassava brown
streak virus (CBSV) and Ugandan-cassava brown streak virus
(UCBSV) was incorporated (Vanderschuren et al. 2012). More
recently, Chauhan et al. (2015), also introduced resistance to
UCBSV, the causal agent of CBSD, and enhanced the nutri-
tional quality of roots of the African landraces TME204 and
Oko-Iyawo (TME7). Similarly for Asian varieties, Kasetsart
University 50 (KU50) is an elite line widely grown by many
farmers in this continent for its high dry matter content.
However, it is highly susceptible to CMD caused by the Sri
Lankan cassava mosaic virus (SLCMV; Dutt et al. 2005). The
good news is that resistance to SLCMV has been engineered in
KU50 by RNAi-mediated silencing of the AV1 coat protein
and AV2 pre-coat protein genes, resulting in at least four single
copy events that turned out to be highly resistant to SLCMV
(Ntui et al. 2015).

No doubt that all aforementioned new transgenic landraces
could be candidates to move out of confined field trials into
multi-site, open-field testing because, as stated by Legg and
collaborators in their 2014 review on virus diseases of cassava,
the stability of engineered resistance to CMD or CBSD has to
be demonstrated in the field, over several cycles of clonal prop-
agation (Legg et al. 2014). However, recently it was reported
that the production of transgenic and non-transgenic cassava
plants through SE and/or FEC resulted in loss of the most
important trait for Africa and Asia: resistance to CMD.
Indeed, African cultivars, i.e., TME204, TME3, and TME7,
carrying a monogenic, dominant, non-transgenic resistance
called CMD2 (Legg et al. 2014), lost resistance to CMD after
being regenerated in vitro via somatic embryogenesis (Beyene
et al. 2015). The cause of such loss is unknown, but predictably
to be of epigenetic nature. The news highlighted the importance
of doing deep phenotypic analysis for themost promising trans-
genic lines, for any trait, analyses that must score morpholog-
ical and agronomic descriptors (Fukuda et al. 2010) in search of
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phenotypic variants as indicators of probable epigenetic varia-
tion. Epigenetic analyses may also help in the early detection of
tissue culture variants, for example, to estimate the magnitude
of changes in the methylome, which varies among convention-
al and tissue-culture propagated plants (Kitimu et al. 2015). The
implication of the finding is clear for those improving traits
through biotechnology in African and Asian cultivars with
CMD2-type resistance: they must find alternative methods to
regenerate transgenic plants that avoid somatic embryogenesis
or FEC or start working with cultivars with CMD1- and/or
CMD3-type of resistances. Indeed the search for such new
methods is already started. Researchers at the Donald
Danforth Plant Science Center in St. Louis, MO, used the cy-
tokinin meta-topolin [6-(3-hydroxybenzylamino) purine] to in-
duce in vitro shoots on non-embryogenic explants of several
cassava cultivars of African, American, and Asian origin
(Chauhan and Taylor 2016).

Nevertheless, the status of functional biosafety regulatory
bodies in African countries is unclear and therefore the suc-
cessful completion of these stories may be at stake. With the
exception of South Africa, Burkina Faso, and Sudan where
GM crops were grown in 2014 (James 2014), approval of their
commercialization, meaning trade, production, importation,
planting, processing, etc., is still pending. Even in Uganda
and Kenya where GM bananas, cotton, cassava, and
drought- and insect-tolerant maize have been tested in con-
fined field trials (James 2014; Nang’ayo et al. 2014), GM
crops have not been released yet. We can only hope that de-
cision makers in these countries impose the needs of cassava
farmers over the interests of anti-GM advocates.

The success of transgenic technology with major crops
such as corn, soybeans, canola, and cotton, for which trans-
genic plants have temporarily solved the problem of suscepti-
bility to lepidopteran pests, is undeniable (James 2014). For
cassava, this solution is still to come, but hope remains, espe-
cially to fight against whiteflies, which are without doubt the
most damaging insect pests of cassava in the three continents
where it is grown. White fly attack causes hunger, famine, and
losses that surpass a billion of dollars per year. Whiteflies are
hemipteran insects that feed from the phloem by breaching
plant tissues to retrieve nutrients. Bemisia tabaci in Africa
transmits the causal viral agent of CMD, and Aleurotrachelus
socialis in South America and the Caribbean causes damage
by direct feeding. A. socialis has recently being implicated also
in the transmission of a still unidentified agent causing cassava
frog skin disease (CFSD) in Colombia (Carvajal-Yepes et al.
2014; Legg et al. 2014), for which there seems to be a phyto-
plasma implicated as well (Alvarez et al. 2009). A biotech
approach likely to combat insect pests of cassava must focus
on biological systems for which there is enough molecular
information, such as molecular mechanisms of plant defense,
the metabolic pathways and genes involved. Whiteflies are
beginning to fit these requisites. The laboratory of Linda

Walling in Riverside (CA) found that the effective develop-
ment of nymphs of B. tabaci type B on Arabidopsis thaliana
relies on the activation of the salicylic acid-defense pathway
(SA pathway) and, simultaneously, the decline or unchanged
RNA levels of genes involved in the jasmonic acid/ethylene
(JA/ET) defense signaling mechanism (Zarate et al. 2007;
Walling 2008). On the other hand, findings by Bohórquez’s
laboratory at CIAT, working with nymphs and adults of
A. socialis feeding on the whitefly-resistant cassava landrace
Ecu72, identified genes that were either upregulated (310) or
down-regulated (210). Among the induced genes were
chitinases, lipoxygenases, and methyl-transferases like
cafeoyl-CoA-o-methyltransferase, the latter being a gene in-
volved in lignin synthesis. Reinforcing cell strength by extra
deposition of lignin on the wall during insect attacks may pre-
clude sucking insects from probing cells with their stylets thus
avoiding virus transmission. Similarly, the mRNA of LOX5
accumulated in whitefly-infested Ecu72 (Bohórquez 2011).
Given that salicylic acid, jasmonic acid, and ethylene control
several of the cellular biochemical paths that respond to patho-
gens and pests, proof that individual genes from both pathways
confer resistance to whiteflies in cassava, seems crucial. The
transgenic-mediated overexpression and/or down-regulation of
genes like LOX5 or cafeoyl-CoA-o-methyltransferase in cassa-
va, aiming for the development of new cassava varieties resis-
tant to whiteflies, is a logical biotechnological approach to dem-
onstrate the role of these genes in cassava’s defense against
whiteflies. In fact, collaborative research between research in-
stitutes, universities and organizations of 11 countries, under the
umbrella of the African Cassava Whitefly Project (2015),
funded by the Bill and Melinda Gates Foundation, is underway
to use genomics, proteomics and metabolomics to better under-
stand whitefly systematics and its outbreaks, cassava resistance
to both whiteflies and viruses, and to generate social and eco-
nomic data for impact assessment.

Exploiting plant-pathogen Interaction as a tool to improve
cassava traits One of the major constraints in cassava is
yield losses caused by diverse viral and bacterial diseases.
Xanthomonas axonopodis pv. manihotis (Xam) is the
causal agent of cassava bacterial blight (CBB), the main
devastating bacterial disease in cassava. Depending on
environmental conditions, CBB can cause field losses of
up to 75% (Lozano 1986; Wydra and Verdier 2002). Xam
is so important that, according to the Molecular Plant
Pathology Journal, today it is considered one of the most
relevant plant pathogenic bacteria based on its scientific
and economic impact (Mansfield et al. 2012). Like other
Xanthomonas species, Xam has a particular group of pro-
teins called transcription activator-like (TAL) effectors,
which are able to bind directly to the host DNA and ma-
nipulate the transcriptional activity of target genes
(Bogdanove et al. 2010). TAL effectors bind to DNA
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promoter regions of the plant called effector-binding ele-
ment (EBE) in a particular base-specific fashion. TAL
effector binding specificity depends on the presence of a
central region consisting of 34–35 nearly identical resi-
dues repeated several times where the hypervariable 12
and 13 positions in each repeat are responsible for DNA
recognition (Boch et al. 2009; Moscou and Bogdanove
2009). Once inside the plant nucleus, TAL effectors may
activate susceptibility (S) genes to favor bacterial growth
and dispersal and finally promote disease (Scholze and
Boch 2011). Alternatively, naturally occurring EBEs are
present in the promoter region of executor resistance (R)
genes and function as molecular traps for TAL effector to
induce host defense. The knowledge of the mechanism of
action of TAL effectors opens new ways not only to im-
prove CBB resistance but also to develop strategies to
validate the function of candidate genes and even the pos-
sibility to direct cassava genome edition.

There are two main approaches to engineer plant resistance
using TALs, first by modification or removal of natural EBE
boxes from S gene promoters, and second by adding EBEs as
molecular traps for the activation of executor R genes
(Schornack et al. 2013). The first approach has been success-
fully used in rice for resistance against Xanthomonas oryzae
strains, the causal agent of bacterial blight (BB). At least four
different X. oryzae TAL effectors are known to target the dis-
ease S gene named SWEET14 to promote bacterial growth,
suggesting a role of this gene as a major S gene for X. oryzae
virulence (Yang et al. 2006; Antony et al. 2010). Using en-
dogenous X. oryzae TAL effectors, TALENs (TAL effector
nucleases) were developed to modify the EBE from
SWEET14 promoter and render these plants resistant to BB
(Li et al. 2012). In addition it was recently demonstrated that
there is a natural variation in promoter targeting by TALs in
rice germoplasm, some of which correspond to EBE and ren-
der the plant resistant to X. oryzae (Hutin et al. 2015).
Nevertheless, in cassava no major S genes have been identi-
fied to contribute to Xam virulence. Current efforts using
RNA-seq and the available EBE prediction tools may lead to
the identification of putative S genes in cassava.

The second approach can be achieved by engineering a
multiple TAL activator trap, consisting of multiple EBEs com-
bined together in one promoter to induce the expression of a
major R gene. This strategy may function as a broad-spectrum
molecular trap since resistance will be induced by a diverse
collection of strains or even different pathogens. In rice, the
specificity of an executor R gene (Xa27) was broadened by the
addition of multiple EBEs for X. oryzae to a single designed
promoter (Hummel et al. 2012).

Once the sequence of any given TAL effector is known (the
more prevalent, for example), it can lead to the artificial design
of EBE boxes contained in promoters to activate executor R
genes. In cassava, by using natural existing or artificial EBEs, it

is possible to design synthetic boxes as traps to activatemajor R
genes. Although in cassava no R or executor genes have been
identified, the repertoire of typical immunity related genes pre-
dicted based on bioinformatics approaches have been reported
and represent a Bmagic box^ of sources of resistance genes
(Lozano et al. 2015; Soto et al. 2015). Alternatively, the use
of executor R genes isolated from other plants, such as Xa27,
Bs3, or Xa10, can be considered a possibility.

In Xam, one TAL effector has been described in detail,
named TALE1Xam (Castiblanco et al. 2013). This effector
is present in several Xam strains, and it contributes to viru-
lence in CFPB1851 (Castiblanco et al. 2013). Based on the
code that determines nucleotide specificity, a strategy has been
developed to induce expression of alternative executor R
genes, such as auto-active nucleotide-binding leucine-rich re-
peats (NB-LRR) proteins to activate immune responses. In
cassava, no Avr-R interaction have been described to date,
thus the strategy of using promoter traps containing an EBE
for TALE1Xam to activate putative R genes may be promising
for cassava resistance to CBB.

Nutritional improvementCassava is considered a poor source
of micronutrients and proteins, especially white roots that are
most commonly consumed fresh and/or for starch production.
Several researchers have used genetic transformation to intro-
duce genes to bio-fortify cassava, that is, to increase the content
of macro- and micro-nutrients in roots. Expressing genes like
CRTB, the bacterial version of plants’ phytoene synthases
(PSYs), in white cassava roots of cv. 60444 increased total ca-
rotenoid content (TCC) up to 30 times (22–31 μg/g DW). The
levels of pro-vitamin A, or β-carotene (BC) also went up to
almost 7 μg/g DW, making former white roots appear orange
(Welsch et al. 2010; Failla et al. 2012). Although the increase in
TCC was outstanding, none of the transgenic lines of cv. 60444
could have outperformed conventionally bred lines with 70μg/g
DWTCC (Morillo et al. 2012), simply because the formerswere
transgenic and were also in a cultivar of limited use in Africa
where biofortification efforts through biotechnology have been
focused (Sayre et al. 2011). However, transgenic cassava carry-
ing exogenous genes of the carotenoid pathway demonstrated
that there were genetic bottlenecks in white roots that prevented
them from accumulating BC. One such constraint was the ab-
sence of an efficient Phytoene Synthase enzyme able to synthe-
size phytoene, the first carotenoid of the pathway. That bottle-
neck was resolved with the overexpression of CRTB alone
(Welsch et al. 2010), together with two more bacterial genes
for phytoene desaturase (CRTI) and lycopene β-cyclase
(CRTY; Bonilla 2010) or with the upstream gene deoxy-
xylulose 5-phosphate synthase (DXS; Failla et al. 2012). The
CRTB gene inserted and expressed in the white-rooted cv.
60444 was later moved through crossing with a yellow-rooted
breeding line (GM905-21; Chavarriaga 2013) to obtain progeny
overexpressing CRTB with TCC slightly higher than the
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yellow-rooted parent, i.e., 11 vs 8 μg/g DW, respectively, again,
lower than that of the conventionally bred lines reported by
Morillo et al. (2012). Nevertheless, altogether these researchers
uncovered the presence of at least one more critical locus, dif-
ferent than PSY, to produce and/or accumulate carotenoids in the
roots of cassava. Very recently SNP-based mapping analysis
indicated that there are at least two sites in the cassava genome,
in chromosomes two and seven, involved in BC accumulation
(Ovalle et al. 2016). It is unknown if these loci are related to
carotenoid synthesis, catabolism, or storage. This constitutes an
excellent opportunity to use genome-editing tools to find out the
true role of this and other genes of the carotenoid pathway in
cassava.

When compared with Brassica oleracea, cassava roots are
very deficient in iron, i.e., broccoli may contain up to
1089 mg/kg of iron while cassava’s iron content ranges from
4 to 49 mg/kg in roots (Mazilla-Dixon et al. 2015). The re-
quired daily intake (RDA) of iron in humans ranges from 8 to
18 mg of iron/d (White and Broadley 2005). If a person were
to satisfy their RDA eating cassava, that person will require
between 163 and 367 g DWof high-iron (49 mg/kg) cassava
roots. If one assumes that the average dry matter content of
cassava is around 30%, then, in terms of fresh root consump-
tion, that same person may have to triple (489–1101 g) the
quantity of cassava consumed to satisfy iron RDA. On the
other hand, if the cassava variety consumed is in the lower
range (4 mg/kg) of iron content, the amount of fresh roots
required to satisfy the RDA becomes inedible (12–13.5 kg
FW). This may be one of the reasons why researchers have
developed transgenic cassavas with increased iron content in
roots, i.e., Ihemere et al. (2012) and Narayanan et al. (2015;
2016), with the latter authors showing that levels of iron can
be increased ten times in the cultivar TME204 when grown in
the field, an interesting achievement considering that
TME204 is a favorite of African farmers.

Vitamin B6 has also been enhanced by 4–48-fold in cassa-
va leaves and 2–6-fold in roots of plants grown in fields by the
overexpression of two Arabidopsis genes: AtTDX1.1, a syn-
thase, and AtTDX2, a glutaminase for the biosynthesis of vi-
tamin B6 in plants (Li et al. 2015). According to the authors,
these plants can provide the RDA of 1.3 mg/d for an adult with
as low as 51 g of boiled leaves or ten times more of boiled
roots. For both, biofortified cassava plants with iron or vitamin
B6, the necessary condition for their deployment and use in
Africa is having resistance to CMV and CBSV. These two
micronutrients are required in minute quantities and excessive
consumption could cause toxicity (Fraga 2005; Hellmann and
Mooney 2010) at least in model animal cell systems. It is
therefore advisable to grow them under supervision, in spe-
cialized gardens, and perhaps under the protection of anti-
whitefly mesh to prevent infection with viruses. Of course,
an in vitro supply of clean material should be available to
replenish plants whenever necessary.

Propagation by tissue culture Cassava is a highly heterozy-
gous crop and many cultivars do not flower or do not produce
enough, viable seeds. A system for vegetative propagation by
stakes (stems or propagules) has therefore been developed to
maintain traits of interest. This system presents advantages for
the farmer since they can exchange stakes freely, but it comes
also with disadvantages such as a low rate of propagation (7–
10 new stakes/mature plant/cycle) with long waiting periods
to get enough planting material (8–14 mo), delayed diffusion
of new improved cultivars, and virus- and phytoplasma-
associated disease dissemination. All of the above risks make
the free exchange of germplasm between production areas
unsafe. Most of these difficulties can be solved by using tissue
culture technology. Small pieces of tissue can be used to in-
crease the rate of propagation, under controlled aseptic condi-
tions, without interference of climate, within short time frames
and minimal space, thus enabling the establishment of seed
producing systems for distributing disease-free planting mate-
rial. A major difference with respect to conventional propaga-
tion by stakes is that in vitro technology reduces or abolishes
spreading diseases causal agents, though the sanitary quality
of planting material must always be verified before starting an
in vitromultiplication program. Table 2 lists some of the tech-
nologies used for propagating cassava.

Conventional propagation can start from stakes cut from
certified stems without going through in vitro. The process can
be accelerated using simple modifications such as two-node
and/or one-bud-one-leaf cuttings method (Patena and Barba
1971; Cock et al. 1982). In spite of the operational advantage
and reduced production costs of conventional propagation,
continuous water and power supply, and large areas for
rooting stakes may be necessary depending upon the method-
ology implemented. On the other hand, in vitro propagation
can be carried out in two ways: (1) either by growing or mul-
tiplying existing meristems or by (2) using de novo regenera-
tion of plants via organogenesis and/or somatic embryogene-
sis. Roca (1979) developed a multiplication system for cassa-
va known as rosettes, which involves meristems producing
multiple shoots that look like cauliflower heads in vitro.
Rosettes are actually intermediates between conventional
and in vitro propagation since they start with large apical
structures, 4 to 5 mm long, containing a meristematic dome
and four- to six-leaf primordia, extracted from sprouting cut-
tings in the field and cultivated onmedium supplemented with
6-benzyl amino purine (BAP). The role of BAP is to break up
apical dominance for inducing multiple adventitious buds
(Table 3). By adding gibberellins (GA3), the pre-induced buds
elongate into numerous in vitro plantlets. Rosettes can produce
up to eight times more plants than conventionally, in vitro prop-
agated stems on solid medium, an attractive number to scale up
cassava multiplication, provided that the phytosanitary status of
the staring material is guaranteed. A drawback is the cultivar-
dependency of the technology.
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Theoretically, routinely under in vitro conditions the number
of plants expected (Z) can be calculated as Z = XYn − L, where X
is the number of initial plantlets, Y is the rate of propagation
observed (for solid-medium systems, cassava normally has a
rate of 1:3–4), n is the number of cycles or generations carried
out (8 cycles of 45 d, or 12 cycles of 30 d each/yr), and L
represents losses due to contamination, no responding explants
and no true-type plants (Escobar et al. 2012). Thus, under opti-
mum conditions, one can expect between 6.5 × 103 (n = 8) and
1.6 × 107 plantlets/yr (n = 12) with a propagation rate (Y) of 1:3
to 1:4, respectively. The assumption is that there is no loss of
plants due to contamination or other factors, which is never the
case. Such numbers may be achieved following good sterility
practices with well-trained manpower.

The multiplication of single nodes containing one apical or
axillary bud each is the simplest way of propagating cassava
in vitro. Cuttings are explanted on basal MS medium
(Murashige and Skoog 1962), at 28 ± 2°C, and a 12 photope-
riod with 18.5 μmol m−2 s−1 of light. The bud growth rate
depends mainly on the balance between plant grow regulators
(PGRs), temperature, and light. Two media are the most com-
monly used for this purpose: 4E, for apex or bud growth, and
17N for rooting (Roca 1984). During the first phase of an
in vitro propagation cycle, the growth of buds is stimulated
on 4E medium while, in the second phase, rooting of well-
developed shoots occurs on 17N medium. The latter favors
root development while slowing shoot growth (Escobar
1991). The interval between these two propagation cycles
ranges between 30 to 45 d. CIAT has developed and used the
single-node system to multiply the entire cassava world collec-
tion, 6467 clones from 28 countries (CIAT 2016). The collec-
tion is kept under trust and is considered the most important
worldwide in terms of number of conserved accessions, the
genetic diversity and geographic area coverage.

During the late 1990s, Konan et al. (1997) established an
in vitro cassava propagation system that pre-induced a multi-
meristematic structure, i.e., shoot tips, using high concentra-
tions of BAP (22–44 μM) and the surfactant Pluronic® F-68
(2%, w/v) on solid media. The authors obtained propagation
rates five times higher than those obtained with the internode
system. Similarly, De Oliveira et al. (2000) established a mass
propagation system using technology developed by EMBRAPA

Table 3. Plant growth regulator composition of media for in vitro
propagation, rooting, and conservation of cassava at CIAT

Medium componentz (μM) 4E 17N 8S Rosette

GA3 0.1443 0.0288 0.2886

6-BAP 0.1775 0.0887 2.2193

NAA 0.1074 0.0537 0.0537 0.0537

z The basic solution for all media, except 17N, contains the complete MS
basal salt mixture (Murashige and Skoog 1962), m-inositol 554.93 mM,
thiamine-HCl 2.96 mM, and sucrose 58.44 mM. Medium 17N contains
instead 1/3 ofMS salts plus 25mg/l Plantex® (fertilizer N/P/K 10:52:10),
with the other components kept constant.

Table 2. Technologies for
cassava propagation Primary source of plants for propagation Propagation system recommendedz

Conventional In vitro

Plants in the field Stakes from mature stems,
2-node cuttings, and
1-bud-1-leaf cuttings

Rosettes

Botanical seedsy Stakes In vitro germination and/or embryo
rescue for breeding

Meristems subject to thermo-
or cryo-therapy to eliminate virus

n.a. Grow on solid media low costx

Bioreactors (i.e., RITA®)w

Somatic embryos n.a. Naked or encapsulated embryos
(synthetic seed)

First generation of in vitro plants in field Young plants
(4 to 6 mo old)v; 2-node
cuttingsv; tunnelsv

n.a.

z Any system of propagation must start from disease-free certified plants
y This is not a conventional multiplication system, although it may be used in the absence of basic planting
material to initiate plantations. Plants with the best characteristics can be selected and propagated to increase
numbers (Rajendran et al. 2000)
x Propagation of cassava can also be done using low cost, locally available, farmer-reachable inputs (Escobar et al.
2006; 2013a)
w Escobar et al. (2001a)
v Seed systems need planting material derived from tissue culture to scale-up cassava propagation by either one of
these three methods (Escobar et al. 2012)
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for six Brazilian varieties. The propagation rate after 30 d was
1:2.9, regardless of variety and number of subcultures. Other
than starting with disease-free plants, these systems do not seem
to offer an advantage in terms of numbers to scale up cassava
multiplication for commercial purposes. Fortunately, Alvard
et al. (1993) described a large-scale, temporary immersion sys-
tem for plant propagation known as RITA®, which proved suc-
cessful for somatic embryogenesis and organogenesis of species
like banana, coffee, rubber, pineapple and sugar cane. With sup-
port from the Colombian Corporation for the Participatory and
Sustainable Development of Small Farmers (PBACorporation),
CIATadjusted, validated, and implemented RITA® for cassava,
using 20 commercial varieties from diverse production areas in
Colombia. Propagation rates increased to 1:6–23 after 45 d, de-
pending on the variety (Escobar et al. 2001a; b), making RITA®
the most efficient system for mass production of cassava plants
in vitro. Even if hyper hydrated plantlets were produced, which
is common, they could recover normal appearance by alternat-
ing cycles of multiplication on solid/liquid media.

Producing pathogen-free stocks via tissue culture The safe
movement of cassava germplasm requires certified virus-free
plants. Quarantine protocols apply for detecting CMD,
CBSVD, CFSD, cassava common mosaic virus (CCMV),
cassava virus X (CsVX), cassava American latent virus
(CALV), and cassava Colombian symptomless virus
(CCSpV) (Frison and Feliu 1991) in shipments of cassava
plants. Hence, strategies must be implemented for cleaning
plants using thermotherapy. This is usually carried out by
the application of a heat regime to whole plants for 3–4 wk,
at 40°C during the day and 35°C at night, 80% relative hu-
midity and 12-h day length (Roca and Jayasinghe 1982).
Meristems are then extracted for proliferation and to establish
in vitro banks. Finally, the absence of virus must be certified
by indicator plants and molecular tools like PCR-based detec-
tion and/or ELISA kits when available. An alternative method
for freeing plants of virus is through somatic embryogenesis,
which has been proved in cassava for ACMV, EACMV, and
CMV (Damba et al. 2013; Nkaa et al. 2013).

The drawback of tissue culture-mediated, virus-free certi-
fication of planting material may reside in the genotype de-
pendency and induced epigenetic variation intrinsic to in vitro
culture. Simple propagation by nodes in vitro alters the meth-
ylation pattern of plants when compared with stakes grown in
the field (Kitimu et al. 2015). This variation may be undesir-
able or, on the contrary, it may be another excellent source of
variability to exploit for epigenetic breeding in cassava, as it
has been the case for tomato (Yang et al. 2015). Although
differential methylation patterns near genes do not necessarily
mean changes in gene expression with subsequent changes in
phenotypes, the implications for cassava are unknown. There
is an urgent need to understand and either exploit or prevent
differential methylation.

Although cryotherapy involves in vitro culture and
therefore possible epigenetic effects, it is a new method to
eradicate pathogens in cassava using shoot tips. Aranzales
(2013) used single tips from in vitro plants to apply three
15-d cycles of thermotherapy (40°C day/35°C night) before
applying a droplet vitrificationmethod (Escobar et al. 2014) to
eliminate CCMVand a Reovirus associated with CFSD.

Somatic embryos and synthetic seeds for multiplication
and disease-free planting material Synthetic seeds are de-
fined as somatic embryos enclosed in artificial nutrient media
that can be stored and germinated to produce whole plants, thus
mimicking the function of sexual seeds to propagate plants
(reviewed by Reddy et al. 2012). Virus-infected cassava plants
reduce yield substantially (Legg et al. 2014), but cassava plants
can be freed of viruses after passing through a cycle of somatic
embryogenesis (Nkaa et al. 2013), which encourages the use
synthetic seeds and/or somatic embryos for cleaning and mas-
sive propagation. Further, comparedwith conventional systems
of clonal reproduction, synthetic seeds and somatic embryos
have the advantage of always being free of pathogens and virus
because they must come from certified in vitro plants. In addi-
tion, both can be produced in large quantities with minimum
space and manpower requirements and free of rough climate
variations. The space and amount of nutrient media required to
grow 1 g of embryogenic cells (potentially 1000 somatic em-
bryos) takes only five Petri plates (9 mm diameter each) and
63 d. This scale of somatic embryo production uses neither
bioreactors nor liquid medium for upscaled propagation leav-
ing more room for improvement (Martínez et al. 2014).
Besides, it also assumes that variables like embryo morpholo-
gy, genotype, encapsulation, and cold storage, among others,
reduce the efficiency of somatic embryo germination by 50%,
so the estimated final embryo-to-plant conversion rate is actu-
ally 2:1 (two embryos give rise to one plant). There are reports
claiming that from 1 mg of embryogenic cells, 1.5 to 8 plants
can be obtained in vitro (not established in the greenhouse;
Raemakers et al. 2001). A germination range between 40%
and 80% indicates that the technology can be substantially
improved. In reality, propagating clonal seeds from somatic
embryos is not as straight-forward as it may seem and requires
optimization. The production of cassava plants frommilligrams
of embryogenic cells could become much more efficient if, for
example, liquid (RITA®) instead of solid media were used,
facilitating the synchronization of somatic embryo develop-
ment. The automation of somatic embryo production using
liquid systems in bioreactors requires standard environmental
conditions like pH, temperature, light, O2 supply, CO2 ex-
change, media composition (i.e., growth regulators), and anti-
biotic depletion, among other variables (Ducos et al. 2007).
Coffee is an excellent example: bioreactors facilitate the mas-
sive production of 2–4 × 105 somatic embryos in 2–5 l biore-
actors for direct sowing in the greenhouse, without
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encapsulation. This approach is worthwhile trying for cassava
(Ducos et al. 2007; 2011; Etienne et al. 2013).

In vitro protocols for the encapsulation and cryopreserva-
tion of nodal cuttings (axillary buds) and shoot tips (apical
buds) have been reported in cassava (Escobar et al. 1997;
2001b, 2013b, Danso and Ford-Lloyd 2003; Charoensub
et al. 2004) for germplasm preservation and exchange.
However, multiplication rates of cassava plants in vitro do
not compete with those of somatic embryos; embryogenic
cells in bioreactors double their mass every 15 d (Ducos
et al. 2007). Furthermore, the isolation of axillary buds or shoot
tips requires manual, individual handling, which increases op-
erations and cost and hinders automation for encapsulation and
storage. On the other hand, use of synthetic seeds and primary
somatic embryos definitively reduce steps in the production of
propagules for cassava multiplication (Fig. 2). The prospect of
automated mass production as in coffee, with up to 4 × 105

somatic embryos l−1 (Ducos et al. 2007), is very appealing for
cassava propagation. Several cassava cultivars produce thou-
sands of somatic embryos or FEC on a single semisolid medi-
um using the synthetic auxins 2,4-D or Picloram (Taylor et al.
2001; 2004; Liu et al. 2011). There is a high potential to use SE
as a source of propagules for scaling-up cassava multiplication
or for cryopreservation for the long-term storage of cassava
germplasm.

From CIAT’s own experience, one somatic embryo-derived
cassava plant can be established from 1 mg of totipotent cells
every 63 d (Martínez et al. 2014). When embryos of cultivar
SM1219-9 were encapsulated, germination was found to be
genotype and stage dependent, with best germination reaching
up to 90% for early-cotyledon embryo stages. For other culti-
vars like Tai16 and 60444, germinations were 53% and 19%,
respectively. Cold storage of synthetic seeds of cultivar
SM1219-9 (5°C for 20 d) reduced germination rates to a max-
imum of 33%, although plants were still recovered. Antibiotics
did not have detrimental effects on germination of synthetic
seeds with no cold treatments. Encapsulated shoot tips germi-
nated at rates closer to 100%, again, without cold storage
(Martínez et al. 2014). The extraordinary multiplication rates
of somatic embryos, allowing automated mass production of
plants via somatic embryogenesis and synthetic seeds, consti-
tutes a powerful alternative to other vegetative propagation
techniques for producing pathogen-free, certified cassava
plants.

In short, fast production of enough and high-quality plant-
ing material for cassava is technically possible using a diverse
array of biotechnological in vitro tools, some of which were
explained above and are summarized in Fig. 3. The prerequi-
sites for the successful implementation of any seed distribu-
tion system, conventional or biotech-based for cassava are the

Disease-free 
in vitro Plants

Primary SE 
induction

FEC

Naked SE

Encapsulated SE (Synthetic Seeds)

Conversionto plants

GreenhouseField

Axillarybud
dissection

Figure 2. Flowchart for the production of cassava plants from naked or
encapsulated somatic embryos (synthetic seeds). The initial source of
explants must be certified, disease-free, in vitro plants (upper left
corner), from which axillary buds are dissected to induce primary
somatic embryos (primary SE) or friable embryogenic callus (FEC).
SEs can then be used with an artificial coat (encapsulated SE; scale in

cm) or without it (naked SE) for producing plants in vitro. Encapsulated
SEs are equivalent to synthetic seeds which, as described in the text, may
be used for short-term storage of cassava germplasm. It is unknown if
synthetic seeds tolerate below-freezing temperatures, which would be
ideal for the long-term storage of germplasm.
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same: it must start from pathogen-free, certified planting ma-
terial; the cost per plant should be affordable by users, be them
small-scale farmers or seed producers; it may be decentralized
and must be supported by official agricultural agencies since
private companies may not be interested in developing seed
systems for cassava. Finally, it must provide new, higher-
yielding varieties regularly, adapted to changing environmen-
tal conditions and consumer demands.

Perspective and Concluding Remarks

The landscape of biotechnology applied to improve cassava
has been encouraging given the number of traits and cultivars
that entered the pipeline of biotech-based breeding in the last
20 yr. It is remarkable that laboratories in developing countries
have been able to adapt and adopt biotechnology as a tool for
breeding. However, although we have passed the stage of
proof of concept for traits like virus resistance, we still expect
GM varieties released in Africa to combat CMD and CBSD.
While the problem of loss of natural resistance to CMD gets
solved, we must keep thinking on in vitro propagation as the
more reliable source of virus-free plants. There is an urgent
need to generate more efficient systems for multiplication and
hardening of plants, in each country, probably decentralized
but with the support of governments, extensionists, and tissue
culture specialists, similar to what exists today for the cocoa
and timber industry.

There have been few examples of development of rapid
propagation, delivery and storage of crops using synthetic

seed technology since the late 1970s. Significant progress in
Douglas-fir and loblolly pine has been achieved due to the
upscaling of SE in bioreactors and the design of new encap-
sulation protocols. For cassava, synthetic seeds may be viable
if protocols minimize the dependency on genotypes to pro-
duce abundant SE/FEC in varieties of economic interest,
followed by scaling up SE/FEC using bioreactors and finally
ensure genetic and phenotypic stability of plants generated
from these seeds. It is noteworthy that most low-scale farmers
demand free, disease-free planting material. This translates
into having to produce synthetic seeds at low cost, which is
a potential limiting factor given that industries, which have set
up seed systems for other clonally propagated crops, may not
be interested in developing them for cassava multiplication.
Implementing the technology described in this review will
therefore be costly. National agricultural research programs
(NARPs) rely heavily on clonal propagation of cassava by
stakes often under uncertified phytosanitary conditions. The
phytosanitary conditions are difficult to maintain after cycles
of propagation in the field. Is this trend changing soon? Can
NARPs and the seed industry envision safer, faster, and
cheaper propagation systems for cassava? The technology ex-
ists, but the willingness may not.

Biotechnological efforts continue to improve traits in cas-
sava, somementioned in this review such as biofortification of
roots and leaves, SLCMV resistance for KU50, waxy cassava
(reviewed by Liu et al. 2011), haploid induction, and
glyphosate- or PPT-tolerant cassava (Table 1; Chauhan et al.
2016), among others. All these transgenic plants may be seen
as final products for countries where African viruses are not

Plants in the field

Thermotherapy and meristem culture

In vitro clean plantlets
First generation

In vitro propagation 

Conventional Low-cost Bioreactors

Certification Certification ??

Certification ??

Unknown phytosanitary status Based on operational capacity 
and technical resources

Rapid propagation by
1. Conventional cuttings
2. Two nodes cuttings
3. One bud-One leaf

Field management

Delivered to end-users

To harvest and get stakes

Cauliflower methodology

Hardening and  
transplant to field conditions 
(mother plants by 6 months)

Rapid propagation
(scale out)

1. Two nodes cuttings
2. One bud-One leaf
3. Tunnels system

Field management

Delivered to end-users

To harvest and get stakes

Figure 3. Flowchart for decision making on propagation methods for
cassava planting material production. The success of diagram procedures
connected by red lines depends solely on the initial material certification
as disease free. The lack of such certification results in lack of confidence
in the system and may result in the distribution of unhealthy planting

material in farmers’ fields. One possibility to ensure clean starting
material is that gene banks provide certified plants in vitro. Any cassava
seed system (blue arrows) must integrate in-vitro platforms with macro-
propagation schemes to offer high-quality abundant planting material
continuously to the end-users.
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yet a constraint. They must be seen also as a source of new
genes, new traits for breeding programs worldwide.
Biotechnology is a tool to rapidly add genetic variability
and/or to discover the genes behind the features. As said be-
fore, several years and funds have been spent searching for a
biotechnology-derived product in cassava. There are several
transgenic prototypes that, with more investment and less reg-
ulation and less opposition, could be pioneer germplasm.
Unfortunately the anti-GM trend has influenced and will
largely determine whether we should keep waiting. Is genome
editing a valid alternative to transgenesis to develop the long-
awaited, biotechnology-derived, non-GM products in cassa-
va? The tendency in the USA may indicate that genome-
edited crops (reviewed by Hsu et al. 2014; Osakabe and
Osakabe 2014; Bortesi and Fischer 2015) may be the way to
go. They are or may be released soon and are not considered
genetically modified, therefore free of the regulation imposed
for transgenics. For example, herbicide-tolerant canola
(CIBUS 2016), mushrooms with reduced oxidation (Waltz
2016), and waxy corn (DuPont-Pioneer 2016), have edited
traits very relevant for cassava breeding; even for adding re-
sistance to DNA and RNAviruses (i.e., Pricea et al. 2015), and
the list may be endless. Therefore, a priority will be the stan-
dardization of genome editing methods applicable to several
cassava varieties that guarantee the maintenance of the geno-
type and produce non-transgenic varieties. The successful im-
plementation of this technology will depend on public accep-
tance, for which the challenge is also an anticipated, truthful,
accurate and fast communication with the general public, and
with non-scientists and decision makers in governments.

Last but not least, to the question if climate changewill affect
global cassava production, the answer is uncertain. Obviously,
it will depend on the region and the period to which we refer. In
their work on modeling climate change and its impact on cas-
sava in Africa, Jarvis et al. (2012) predict that, compared with
beans, potatoes, bananas, and sorghum, cassava will have a
much lower percentage of negative impact change (−3.7%) in
climate suitability or the ability of the crop to produce under
new climatic conditions. By way of comparison and according
to this same study, the estimated negative impact on beans and
potatoes in Africa would be −16% and −14.7%, respectively.
The reason why climate change would not have such a severe
impact on cassava production in Africa is that, in countries
where it is mostly grown (East, West and Central Africa), the
maximum temperature rise for 2030 is forecasted to be below
1.5°C, a tolerable change for a crop adapted to drought and high
tropical temperatures. However, climate change will not be uni-
form across the globe and will possibly open new niches for
biotic and abiotic stresses decimating current cassava produc-
tion. For cassava farmers in South China, South Africa,
Southern Brazil, Paraguay, and Northern Argentina, tolerance
to low temperatures and even frost is crucial, so conventional
and biotechnology-mediated breeding should keep focused on

improving this trait. Climate change also opens new niches for
whiteflies, for example, by heating areas where they could not
inhabit before. These CMD-transmitting insects are highly
adaptable to changes in temperature by altering the expression
pattern of heat shock proteins, which allows them, among other
effects, to increase fitness after heat shocks (Díaz et al. 2015).
Thus, these new Bwindows^ opened by climate change that
would affect cassava production for the next 30 yr, may be
paradoxically perceived as windows of opportunity for improv-
ing cassava through biotechnology, hand to hand with conven-
tional breeding, an initiative that started over 30 yr ago and
remains current.
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