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A B S T R A C T

Estimating nitrogen (N) concentration in situ is fundamental for managing the fertilization of the sugarcane crop.
The purpose of this work was to develop estimation models that explain how N varies over time as a function of
three spectral data transformations in two stages (plant cane and first ratoon) under variable rates of N appli-
cation. A randomized complete-block experimental design was applied, with four levels of N fertilization: 0, 80,
160, and 240 kg N ha�1. Six sampling events were carried out during the rapid growth stage, where the canopy
reflectance spectra with a hyperspectral sensor were measured, and tissue samples for N determination in plant
cane and first ratoon were taken, from 60 days after emergence (DAE) and 60 days after harvest (DAH),
respectively, until days 210 DAE and 210 DAH. To build the models, partial least squares regression analysis was
used and was trained by three transformations of the spectral data: (i) average reflectance spectrum (R), (ii)
multiple scatter correction and Savitzky-Golay filter MSC-SG) reflectance spectrum, and (iii) calculated vegetation
indices (VIs).
1. Introduction

Worldwide, sugarcane (Saccharum spp.) has supplied on average
163.1 million tons of sugar and 88.9 million liters of ethanol in the past
decade. Currently, a planted area of approximately 26 million hectares
is reported worldwide, and according to CENICA~NA, (2018), producing
one ton of millable cane requires an average of 1.1 kg of nitrogen (N),
though this amount varies with the variety. However, the N fertilization
of sugarcane is a challenge (Amaral et al., 2014), given that there are few
early and reliable alternatives that allow the determination of the
availability of this element in the soil (Amaral et al., 2015; Botero et al.,
2009), especially in tropical regions, due to N cycle dynamics and soil
variability, nor are there adequatemethods to determine the availability
of N in real time. Aiming to optimize this effort, the concentration of leaf
N can be correlated with the spectral response, measured by optical
spectroscopy techniques such as the diffuse reflectance of the crop
canopy (Amaral et al., 2015; Andrade et al., 2015).

Regarding the application of optical spectroscopy methods to mea-
sure reflectance in the sugarcane crop, different studies have found
du.co (C.A. Galindez-Jamioy).
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significant relationships with leaf N concentration under variable rates of
N application. Robson et al. (2016) evaluated 15 varieties of sugarcane
with satellite sensors and field radiometry at the canopy scale using six
normalized difference vegetation indices (NDVIs). Amaral and Molin
(2014) evaluated the canopies of four varieties with field radiometry and
found significant relationships between the N applicate rate and three
calculated VIs. Abdel-Rahman et al. (2013) worked with one variety of
cane and hyperspectral data from a satellite sensor, applying algorithms
to simplify their processing and prediction of leaf N concentration.
Miphokasap et al. (2012) measured reflectance spectra in the field over
the canopy, took the first derivative, calculated VI, and estimated models
that significantly explained the N variation in three cane varieties. Portz
et al. (2012) found, at three times in physiological development, that a
field sensor could identify the variability of N consumption in fields
planted with three varieties of sugarcane.

In general, each study reports experiments with different eda-
phoclimatic conditions, fertilization sources, N application rate and
sugarcane varieties. However, sampling numbers have been small,
at most three measurement times have been used for both spectral
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Figure 2. Total monthly mean rainfall and temperature during the two stages of
the rapid growth stage of sugarcane variety CC 01–1940 in 2018–2019.

A. Reyes-Trujillo et al. Heliyon 7 (2021) e06566
responses and photochemical and biophysical characteristics, and
their responses to different N fertilization rates have been calculated
only during the vegetative cycle of the crop. This suggests that
specific work is required to formulate standard measurement pro-
tocols that can determine the spectral response of a particular va-
riety of sugarcane during different stages of its vegetative cycle.
Doing so would allow more frequent monitoring, as in the case of
experiments with variable N application rates, given the high vari-
ability of the forms of N available in the soil and the importance of
N in the optimal development of the crop. Additionally, the
methods to estimate the leaf N content are destructive, take a long
time to generate results, and cause loss of plant material (Botero
et al., 2009; Huber et al., 2008).

In the search for solutions to the above shortcomings, remote
sensing has proven capable of estimating leaf N content based on
spectral signatures. However, when it is done from satellite images,
problems have come from the varied climatic conditions and the
low resolution that they provide. Image resolutions obtained so far
lack the precision required when addressing leaf N, due to the large
distance from the leaves to the sensors and because these images
can be affected by high cloudiness (Araque and Jim�enez, 2009). The
purpose of this research was to develop models to estimate the
concentration of N in the canopy of the cane variety CC 01–1940
during the rapid growth stage from both lab-determined leaf N and
the canopy spectral reflectance obtained in the field.
Figure 1. Location of the experiment: Experimental Station of the A
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2. Materials and methods

2.1. Study site

The experiment was carried out from April 2018 to August 2019 at
the Experimental Station of the Laboratory of Agricultural Waters and
Soils (3�22022.5800 N; 76�31047.5700 W) of the Universidad del Valle
headquarters, Mel�endez, Cali, Colombia (Figure 1). The experimental site
gricultural Water and Soils Laboratory, Universidad del Valle.
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was located at an elevation of 995 masl in a tropical dry forest climate,
characterized by two rainy periods and two dry periods alternating
throughout the year. Figure 2 shows the total monthly precipitation and
the average temperature during two stages of the rapid growth stage of
sugarcane. During the plant cane stage, there was a total precipitation of
575.4 mm and an average temperature of 24.1 �C, and during the first
ratoon, there was a total precipitation of 523.8 mm and an average
temperature of 24.6 �C. The predominant soil type was Udertic Haplus-
toll, belonging to the Arroyo (AY) consociation; it had a slow internal and
very slow external drainage and a moderately deep to deep effective root
depth.

2.2. Experimental design

For the two stages, a randomized complete-block experimental design
was applied with 5 repetitions (blocks), placed according to the organic
matter content of the soil to minimize variability inside blocks, applying
four different N rates (UAN-32 solution), for a total of 20 experimental
units (EUs) each 33 m2 in size, consisting of four rows 5 m long and
spaced 1.65 m apart, planted with the variety CC 01–1940. To avoid edge
effects between treatments, a row was left open between plots. The N
fertilizer rates applied in the rapid growth stage were (i) 0 kg N ha�1, (ii)
80 kg N ha�1, (iii) 160 kg N ha�1, and (iv) 240 kg N ha�1. For the
application of N as well as the other required primary elements, high-
frequency localized fertigation was programmed according to the N
application rate of each EU and according to the absorption rate (kg ha�1-
month�1) of each proposed element (CENICA~NA, 2018). Other agricul-
tural practices, including tillage, disease and pest management, and
application of herbicides, were carried out according to the recommen-
dations of CENICA~NA.

The plant cane was planted on April 20, 2018, placing seed at the
bottom of the furrow at a rate of 7–10 buds per linear meter. In this stage,
six monthly sampling events were conducted from 60 days after emer-
gence (DAE) to 210 DAE. The first ratoon stage began on November 12,
2018, after cutting the plant cane. For this stage, six monthly sampling
events were also carried out from 60 days after harvest (DAH) to 210
DAH. In the Cauca River valley, the cane stage is 12–13 months long, but
this study only evaluated the rapid growth stage up to 7 months.

2.3. Data collection

2.3.1. Measurement of crop canopy reflectance spectra
To capture the reflectance spectra, a measurement system based on

optical spectroscopy in the VIS range was developed. The system con-
sisted of an aerial platform with mechanical and electronic conditioning
to transport a STS:VIS microspectrometer (336–822 nm), with an optical
resolution of 1.5 nm � 0.05 nm and 1024 pixels, coupled to a PC and an
optical opening control between 1� and 28�, which was located at a
vertical distance of approximately 1 m above the canopy of the crop. It
also includes a reference panel with Spectralon as the diffusion material
and a reflectivity of 99% between 400 and 1500 nm to monitor changes
in the reference irradiance and thus avoid saturation, eliminate the effect
of changes in lighting conditions, and ensure that the measurements were
comparable. The system also ensured independence from atmospheric
effects since the aerial platform operated at low altitude.

The system was configured to calculate each reflectance spectrum
with an integration time of 200 ms and an average of five readings per
sample. In addition, it was programmed to take readings for 30 s over a
distance of 5 m, equivalent to the length of the EU. The reflectance
spectra were measured between 10:00 h and 15:00 h in both crop cycles
and their respective sampling events.

2.3.2. Determination of N
After measuring the reflectance spectra, four plants per EU were

randomly selected, in which the first leaf with a visible ligule was
identified and cut from the main stem. Then, the middle third of each leaf
3

was dissected, and the central rib was removed to obtain one leaf tissue
sample per EU. These were dried at 60 �C for 24 h and ground. The leaf N
concentration was determined by Kjeldahl, performing predigestion for
24 h with H2SO4 and catalysts composed of CuSO4 and K2SO4. Next,
digestion was performed by subjecting the leaf sample to 250 �C for 30
min and then to 350 �C for 2 h until the samples turned translucent green.
Then, distillation was performed with 40% NaOH, and ammoniacal N
was collected into a solution of boric acid and indicator. The percentage
of N was quantified using H2SO4 (0.005 normal) in the titration. The
standard error of the lab method for N in the two stages is 0.05%.

Additionally, the dry mass of green leaves per area was quantified to
determine the concentration of leaf N per unit area (Nf, in g⋅m�2) and the
leaf area index (LAI, in m2⋅m�2) with LAI-2200C equipment in each EU.
This was done to determine the concentration of N in the canopy (Nc, in
g⋅m�2) (Eq. (1)) based on the fit of the equation used by (Lebourgeois
et al., 2012), as follows:

Nc ¼ Nf x LAI (1)

2.4. Treatment of reflectance spectra

The transformations of the spectral data were compared to select the
best Nc estimationmodel based on the canopy scale reflectance spectra of
the sugarcane crop: (i) average reflectance spectrum per EU (R), (ii)
multiple-scatter correction (MSC) and a Savitzky-Golay (SG) filter
reflectance spectrum, and (iii) vegetation indices (VIs) calculated from
specific spectral bands.

2.4.1. Average reflectance spectrum
The data collection design yielded 10 spectra per row, for a total

of 40 per EU and 800 per sampling event. An exploratory analysis
was performed to exclude noisy wavelengths of a region (336–449
nm) from the data analysis. Atypical spectra were omitted from the
reflectance data between 450 nm and 822 nm since they increase
the error in the statistical analysis (Suarez et al., 2016). To equate
the spectral data with the Nc values, the average was calculated for
each EU.

2.4.2. Multiple-scatter correction and Savitzky-Golay filter
The basis of MSC is the fact that the dependence of light scattering on

the wavelength is different from that of chemical-based light absorption.
The dispersion in each sample is estimated in relation to that of an “ideal”
sample, in this case the average, and the spectrum of each sample is
corrected for this.

This version of MSC uses an ordinary least squares regression between
the spectrum of sample X and the “ideal” spectrum to calculate the terms
a and b and thus the corrected spectrum X1 from the following equation
(Eq. (2)):

X1 ¼ ðX � aÞ
b

(2)

The SG filter consists of fitting a set of consecutive data to a poly-
nomial and taking the center point of the adjusted polynomial curve as a
new smoothed data point, with the advantage that it smooths the
reflectance spectrum while preserving the characteristics of the initial
distribution, the relative maxima and minima, and the width between
peaks. The filter can be written as (Eq. (3)):

xj * ¼ 1
N

Xk

h¼�k

Chxjþh (3)

where xj is the new value, N is a normalization coefficient, k is the size of
the space on each side of j, and C and h are previously calculated co-
efficients, which depend on the order selected (Stenvens and Ramir-
ez-L�opez, 2014).
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2.4.3. Calculation of vegetation indices
The hyperspectral data obtained allowed VIs to be calculated at

specific wavelengths, mostly as normalized differences. A total of 29 VIs
were calculated (Table 1) for each of the 800 reflectance spectra per
sampling event, and the average of each VI per EU was taken.
2.5. Data analysis

2.5.1. Partial least squares analysis
To determine the ability to estimate the Nc from the spectral data

transformations, they were evaluated by partial least squares (PLS). This
approach has the ability to treat many correlated independent variables
(wavelengths) and relatively few observations, reduce them to a set of
components while avoiding multicollinearity, and in particular estimate
a set of dependent variables (Nc). In this case, to build the regression
model, the matrix for the transformations R and MSC-SG is composed of
779 wavelengths (X) and the variation is made up of 29 VIs, (X) for each
value of the dependent variable (Y) in each EU, and is expressed as fol-
lows (Eq. (4)):

Y¼X* Bþ ε (4)

where B is the matrix of regression coefficients and ε is the matrix of
residuals. The fit of the PLS model was evaluated by selecting an optimal
number of components, which was determined by minimizing the root
mean square error using leave-one-out cross-validation (RMSEcv), veri-
fying the percentage of variance explained.

Additionally, to evaluate the performance of the model and compare
between samplings, the variance explained (r2), the relative root mean
square error (RMSEr), and the residual prediction deviation (RPD) were
used, which indicates the behavior of the precision of the fit compared to
the average composition of all samples. High r2 and low RMSEr indicate
greater precision and accuracy of a model in estimating Nc (Li et al.,
2016b). Simultaneously, the model is considered unacceptable, accept-
able, or good depending on the range of r2 and RPD values, as shown in
Table 2 (Wang et al., 2013).

2.5.2. Selection of effective wavelengths
In the transformations proposed to estimate Nc, the relative impor-

tance of the wavelengths and the VIs in the PLS regression was evaluated
by calculating the variable importance in projection (VIP) defined by
Wold et al. (2001). The magnitude of the VIP indicates the contribution
Table 1. Calculated vegetation indices.

Vegetation index

(1) CIrededge ¼ (750/710) - 1

(2) NDVI750/650¼ (750 - 650)/(750 þ 650)

(3) NDVIg ¼ (750 - 550)/(750 þ 550)

(4) CIgreen ¼ (820/550)-1

(5) CCCI ¼ ((820 - 717)/(820 þ 717))/((820 - 668)/(820 þ 668))

(6) NDVI ¼ (820 -668)/(820 þ 668)

(7) NDVIRE ¼ (717-668)/(717 þ 668)

(8) NDERE ¼ (820-717)/(820 þ 717)

(9) GNDVI ¼ (820-560)/(820 þ 560)

(10) GNDRE ¼ (717-560)/(717 þ 560)

(11) BNDVI¼(820-475)/(820 þ 475)

(12) BNDRE¼(717-475)/(717 þ 475)

(13) EVI ¼ 2.5*(820-668)/(820 þ 6*668–7.5*475 þ 1)

(14) EVIRE1 ¼ 2.5*(717-668)/(717 þ 6*668–7.5*475 þ 1)

(15) EVIRE2 ¼ 2.5*(820-717)/(820 þ 6*717–7.5*475 þ 1)

(Adapted from: Henrich et al., 2012)
Note: The number in parentheses corresponds to the order assigned in the correlatio
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of each wavelength or VI to the value of Nc estimated by the model,
independent of the noise present in the information, and works well even
when r2 is low and RMSEr is high. VIP is calculated as (Eq. (5)):

VIPkðaÞ¼K
X

a

W2akðSSYa

SSYt
Þ (5)

where VIPk(a) is the importance of wavelength or the VI in the kth var-
iable based on a model with a factors (PLS components), W2ak is the
weight of the wavelength or VI variable in the ath factor of the PLS, SSYa
represents the sum of squares explained by Y by the PLS model with a
factors, and SSYt is the total sum of squares of Y explained by all a factors
of the PLS model (Li et al., 2016a). According to (Steidle Neto et al.,
2017), wavelengths or VIs with VIP values greater than 1 are highly
influential in the estimation, between 0.8 and 1 moderately influential,
and less than 0.8 insignificant in the estimation of Nc.

2.5.3. Purpose of the model

The objective was to independently evaluate the predictive behavior
of the reflectance and VI spectra in each sampling event per stage to take
advantage of the potential of the PLS regression and to generate infor-
mation that would allow us to infer the temporal variability. Therefore,
in each sampling event, 20 samples were used (four N treatments, five
replicates, for a total of 120 samples per stage). The PLS regression and
graphs were drawn using the PLS library run under the R (v.3.6.1)
language.

3. Results and discussion

3.1. Evaluation of canopy N

The Nc varied over time in both stages (Figure 3), tending to
increase up to 180 DAE, when it reached an average value of 27.39
g⋅m�2 (SD 2.20) in plant cane, while in first ratoon, Nc increased up
to 150 DAH, with an average value of 26.29 g⋅m�2 (SD 1.63), and
then decreased and stabilized up to 210 days at average values of
17.34 g⋅m�2 (SD 3.87) to 23.88 g⋅m�2 (SD 1.32), respectively. The
increase was directly associated with the size and amount of leaf
tissue, reflected in a LAI that showed continuous increases between
emergence and sample 5. In this stage, the plant directs part of the
absorbed element to leaf development. The subsequent decrease in
Nc is attributed to N being allocated to development processes
Vegetation index

(16) CVI ¼(820*668)/(560̂2)

(17) CVIRE1 ¼ (717*668)/(560̂2)

(18) CVIRE2 ¼ (820*717)/(560̂2)

(19) CIRE1 ¼ 717/(668-1)

(20) CIRE2 ¼ 820/(717-1)

(21) CIG ¼ 820/(560-1)

(22) CIGRE ¼ 717/(560-1)

(23) NGRDI ¼ (560-668)/(560 þ 668)

(24) ENDVI ¼ ((820 þ 560)-(2*475))/((820 þ 560)þ(2*475))

(25) ENDRE ¼ ((717 þ 560)-(2*475))/((717 þ 560)þ(2*475))

(26) NDRE ¼ ((780-730)/(780 þ 730))

(27) VOGRE ¼ (740)/(720)

(28) DVI ¼ ((780-668)

(29) MNDVI8¼((755-730)/(755 þ 730))

n and regression analysis.



Table 2. Model performance according to R2 and RPD.

Statistical methods Model Performance

Unacceptable Acceptable Good

r2 <0.50 0.50–0.75 >0.75

RPD* <1.40 1.40–2.00 >2.00

* RPD ¼ (SD)/RMSE.
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associated with the early maturation stage, where stalk length and
thickness increase (CENICA~NA, 2018).

Although N reached its maximum later in the plant cane than in first
ratoon, the increase in both stages was approximately 25 g⋅m�2 when
comparing the maximum Nc found at 60 DAE and 60 DAH. This was
because in the plant cane, the plant must begin to use N for the formation
of organs such as roots and the elongation of the first stems, while in first
ratoon, the plant has already developed roots and is better adapted to the
edaphic conditions; therefore, N is translocated to the upper leaves, as
evidenced by the increase in the LAI in this rapid growth stage.

Figure 3 shows that the behavior of the median and the variance, per
sample in each stage, changes as a function of the growth stage, with less
variation in the first two seasons, according to the interquartile range
represented in the box. Therefore, to infer the effect of N on crop
development and on the optical properties at the canopy level, a total of
36 models were generated to estimate Nc, including the six sampling
events per stage and the three transformations of the spectral data.

3.2. Canopy reflective spectra and influence of the leaf N concentration

The spectral response for the cane variety CC 01–1940 in the two
stages evaluated is presented in Figure 4. Reflectance corresponded to the
average of 1200 spectra per treatment and a total of 4800 per stage. In
plant cane, the reflectance values were lower due to less leaf develop-
ment in this stage and to its characteristic erectophilic leaf arrangement
in the upper canopy. In addition, the N treatments generated differences
in the near-infrared (NIR) plateau (750–822 nm), where the reflectance
tended to decrease with decreasing N application. The spectral response
Figure 3. Temporal dynamics of total canopy

Figure 4. Canopy reflectance spectra per tre
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in first ratoon had higher reflectance values due to the greater leaf
density in this stage, and there was no observed effect of the treatments
because of the complex dynamics of the element in the soil type and the N
availability, due to factors such as organic matter mineralization and
fixation bymicroorganisms (Franco et al., 2011; Schultz et al., 2012). The
effect observed in the NIR plateau is influenced by the canopy structure
(LAI, fractional vegetation cover and leaf structure) (Lebourgeois et al.,
2012). Plants respond to N supply through changes in chlorophyll con-
centration, biomass production, and leaf area index (Katsoulas et al.,
2016), which alters the canopy reflectance. In the VIS region, the effect is
not as evident given the combination of biomass concentration and
chlorophyll (Hansen and Schjoerring, 2003).
3.3. Correlation between Nc and reflectance spectra

The spectral transformations were correlated with Nc using the
complete dataset. The trend in the first three sampling events in each
stage was that Nc had a negative correlation with R in the VIS wave-
lengths and a positive correlation in the NIR (Fig. 5a, d), in agreement
with (Abdel-rahman et al., 2010; Li et al., 2016b), except in sample 2 (90
DAE) in plant cane, which showed indirect and significant relationships
across the spectrum. The correlation curve identified regions of more
significant activity at 450–500 nm, 590–640 nm, and approximately 700
nm, regions that coincide with the absorption peaks and that are acti-
vated by changes in the concentrations and quality of pigments, associ-
ated with the supply of N. In later samples, the relationship was positive
in both VIS and NIR regions, with significant activity at 470, 481, and
650 nm in first ratoon and at 750–821 nm in plant cane, except in sample
6 (210 DAE) of first ratoon, where the correlation was inverted in the NIR
region but was not significant (Figure 5d). Therefore, the first samples
presented good regression models, given the statistical significance and
differences greater than 0.5 between the maximum and minimum cor-
relation values. In addition, the influence of crop age is evident in its
effects on leaf chemistry and canopy architecture, which generate
changes in the relationships between variables and the spectral response,
a relevant aspect for guiding the monitoring and interpretation of the
temporal dynamics of the crop's spectral response.
N content. (a) Plant cane. (b) First ratoon.

atment. (a) Plant cane. (b) First ratoon.



Figure 5. Temporal variability and correlation curve between Nc and reflectance spectra transformations. (a, b, c) Plant cane (d, e, f) First ratoon.
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MSC-SG smoothed the correlation graph, facilitating the identifica-
tion of active areas, without losing the variations of the original data
(Barbin et al., 2012) or its relationship with Nc in each sample, as was the
aim in this study. The first samples had significant activity in the VIS and
NIR regions. For the plant cane stage, the regions 550–600 nm and
750–821 nm stood out, and only the sample from 180 DAE showed sig-
nificance (Figure 5b). In first ratoon, in the first sample, regions of sig-
nificant activity occurred at approximately 466, 550, 627, 680, 730, 750,
and 804 nm (Figure 5e).

When relating Nc to VI (Fig. 5c, f), it was found that the bioindicators
involving the red-edge region were the most significant in both stages
evaluated, independent of the sampling event. This transition region is
generated by the strong absorption of pigments and the increase in
multiple scattering of the canopy (Zhu et al., 2014), the latter when the
irradiance is quantified under field conditions and the light source is the
sun. In addition, this region is sensitive to the effects of N on the con-
centrations of pigments, such as chlorophyll and carotenes. By relating
this result with those obtained in the previous transformations, the
wavelength values in the red edge could be used as significant markers,
which better adjust with bioindicators in the different sampling events
(VOGRE, NDRE, ENDRE, CIRE2), as in the case of 717 nm–700 nm or 750
nm, which had greater activity in sugarcane.

3.4. Performance of PLS models

The PLSmodel was proposed with Nc (g⋅m�2) as a dependent variable
and the transformations of the spectral data (R, MSC-SG, VI) as inde-
pendent variables. Eighteenmodels per stage were analyzed to determine
the best time to collect data in the field. The optimal number of com-
ponents (ONC) to include in each model was determined according to the
minimum value of the RMSEcv and the r 2, which is important for
omitting excess components, which would lead to an overfitting problem.
Tables 3 and 4 show that the ONC varied little with the number of
components selected between samples within each transformation, but
there was a difference when there were more than six components
6

between the transformation of VI and the other two in both stages. Given
this high variation between samples of each transformation, it was
necessary to establish a balance between RMSEcv, the variance
explained, and the number of components (Li et al., 2016a).

Once the ONC was selected, the dataset was used to train the model
and quantify the Nc estimate. The results of the PLS regression for the
plant cane stage showed similar performance in samples 1 and 3 between
the R transformation and MSC-SG (Table 3), presenting values of r2 equal
to or greater than 0.92 and RMSEr less than 5%, and the RPD classified
the models obtained as those with the best performance. Transformation
VI yielded good performance statistics in samples 1 and 2, according to
the ranges proposed by (Wang et al., 2013) (Table 3). Additionally, the
results show, independent of the transformation method, that the first
three sampling times would be the best times to collect field data, in
particular sample 1 (60 DAE) in plant cane, which had r2 values of 0.98,
0.99, and 0.97 for R, SG-MSC, and VI, respectively. In first ratoon, the
best sampling is at 90 DAH, with r2 values of 0.98 and 0.99 for R and
SG-MSC, respectively. The above generally shows, for both samples, that
the percentage of variation between the adjusted and the observed data
(RMSEr) did not exceed 5%. This is consistent with studies conducted by
(Amaral et al., 2015; Portz et al., 2013), who found that the use of canopy
reflectance sensors showed better correlations in the early stages of
sugarcane crop growth.

In first ratoon (Table 4), in terms of model performance for selecting
the best time to estimate the Nc, the R and MSC-SG transformations re-
sults that coincided with those of the plant cane stage in the first two time
points, with a variation in the predicted values less than 5% and vari-
ances explained greater than 95%. Additionally, the performance of the
models in sample 5 (180DDC) improved under all transformation
methods, which presented r2 values equal to or greater than 0.75 and
RPD >2.0. In particular, the performance of the VI transformation
improved, with an RDP of 4.06 and a variation in the adjusted values of
3.38%, as shown in Table 4. This improvement was attributed to using
bioindicators derived from the red-edge region, which mitigated satu-
ration when used in crops with high biomass production, such as



Table 3. Performance of the PLS models between hyperspectral and Nc data in plant cane.

R MSC-SG IV

DAE ONC RMSEcv Y-r2 RMSEr (%) RPD ONC RMSEcv Y-r2 RMSEr (%) RPD ONC RMSEcv Y-r2 RMSEr (%) RPD

60 8 0,40 0,98 3,80 6,65 7 0,39 0,99 2,67 9,50 12 0,36 0,97 4,52 5,57

90 5 0,87 0,85 7,98 2,67 4 1,19 0,63 12,56 1,69 9 1,22 0,81 9,03 2,35

120 7 2,02 0,92 4,49 3,68 7 1,89 0,94 3,86 4,29 3 2,16 0,18 14,66 1,13

150 4 3,20 0,55 11,27 1,53 4 3,40 0,55 11,22 1,53 2 4,61 0,19 15,07 1,14

180 4 2,84 0,74 6,83 2,02 4 2,92 0,73 7,03 1,96 1 3,82 0,15 12,35 1,11

210 1 7,82 0,23 36,51 1,17 1 8,77 0,06 40,42 1,06 1 9,72 0,06 40,44 1,06

DAE: days after emergence. ONC: optimal number of components. RMSE: root mean square error. cv: cross-validation. r2: variance explained. RPD: residual prediction
deviation.

Table 4. Performance of the PLS models between hyperspectral and Nc data in first ratoon.

R MSC-SG IV

DAH ONC RMSEcv Y-r2 RMSEr (%) RPD ONC RMSEcv Y-r2 RMSEr (%) RPD ONC RMSEcv Y-r2 RMSEr (%) RPD

60 7 0,35 0,96 4,35 5,32 6 0,34 0,97 3,79 6,11 1 0,38 0,23 19,80 1,17

90 7 0,72 0,98 1,16 9,55 7 0,71 0,99 0,99 11,20 2 1,12 0,35 8,66 1,28

120 2 2,43 0,24 8,54 1,18 1 2,28 0,29 8,29 1,21 2 2,47 0,08 9,43 1,07

150 4 3,41 0,24 9,79 1,17 2 3,35 0,11 10,56 1,09 6 2,89 0,72 5,94 1,93

180 7 4,00 0,81 5,75 2,38 6 3,36 0,75 6,63 2,07 12 3,53 0,94 3,38 4,06

210 4 1,83 0,46 5,66 1,39 1 2,06 0,05 7,51 1,05 9 1,94 0,80 3,42 2,32

DAH: days after harvest. ONC: optimal number of components. RMSE: root mean square error. cv: cross-validation. r2: variance explained. RPD: residual prediction
deviation.
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sugarcane. These bioindicators are sensitive to wide ranges of N content,
photosynthetic pigments, leaf area, and biomass (Darvishzadeh et al.,
2008; le Maire et al., 2008; Mutanga and Skidmore, 2007; Xiuhua et al.,
2015).

Building PLS models considering Nc and canopy-scale reflectance will
improve model performance due to the strong influence of N fertilization
on the development of the leaf component of the canopy, and in turn on
the spectral response, as found by Lebourgeois et al. (2012), Lofton et al.
(2012), who even quantified it from VIs of specific bands. In addition,
having well-fitting models in the early stages is essential for managing
fertilization operations at appropriate times, both for the fertilizer's effect
on the vegetative development of the crop and the efficiency of the
fertilization.

We also observed that the models obtained with the R method offered
good performance in samples 1, 2, and 3 and acceptable performance in
samples 4 and 5. Similar results regarding the use of raw spectral data
have been reported by (Stenvens and Ramirez-L�opez, 2014; Suarez et al.,
2016). This implies that the transformations that reduce noise associated
with variations in the intensity of solar radiation, high cloud cover, in the
angle of incidence, and topographic effects (Tewari et al., 2008) do not
significantly improve the performance of PLS models in the early stages
of sugarcane crop development.
3.5. Interpretation of the PLS model

The contribution of each wavelength to the model performance was
analyzed by observing the behavior of the regression coefficients of the
models (Barbin et al., 2012). Figure 6 shows the results for the models
with better performance, and in both stages, activity was observed in the
blue region between 455 and 470 nm, characterized by the high ab-
sorption of radiation associated with concentrated pigments and
providing a measure of the stress caused by their degradation and the
consequent detection of N (Basyouni and Dunn, 2013; Katsoulas et al.,
2016). Another region of high contribution to the model is in the
red-edge region, with wavelengths at approximately 725, 750, 760, 780,
and 797 nm, which is a representative region of photosynthetic capacity
7

and physiological stress because of the maximum sensitivity of absorp-
tion and reflectance in this region, allowing an accurate evaluation of
crop biochemistry (Cordon, 2009; Zhao et al., 2007). In the NIR, the
contribution of 820 nm was significant in both stages. In general, the
coefficients of sample 1 (60 DAE) in both stages showed the same active
zones but with less contributions in the magnitudes of their coefficients,
which we attributed to the lower concentrations of pigments and N in this
first stage of physiological development in the plant. The contribution of
the coefficients coincided with the active regions identified in the cor-
relation analysis, confirming that variations in the amplitude of the
correlation graph (Figure 5) indicate the probability of good model
performance. For VI, the greatest contributing index was VOGRE (data
not shown), which is reported to be highly correlated with the leaf
concentrations of N and chlorophyll (Bulcock and Jewitt, 2010). To
calculate this index, the red-edge region and NIR wavelengths are used,
which in the case of sugarcane can be adjusted due to the high influence
of these values found in these regions.
3.6. Identification of effective wavelengths by VIP

The VIP graph (Figure 7) identifies the wavelengths with the greatest
importance in the evaluation of Nc. According to their magnitudes, the
blue- and red-edge regions had wavelengths with local maxima similar to
those identified from the contributions of the coefficients. In both stages,
it was common for the red-edge region to present a higher density of local
maxima (719, 722, 725, 730, 758, and 760 nm), with some sights in the
blue (450, 459, and 462 nm), green (505 and 534 nm), red (671 nm), and
NIR (approximately 809 and 820 nm). Some of these bands were iden-
tified as making high contributions according to the regression co-
efficients of the best-performing models. An interesting result is the high
influence found by the blue region, which is not commonly associated
with plant health or physiological status (Robles et al., 2010; Suarez
et al., 2016), indicating the potential value of including it in the adjust-
ment of bioindicators can monitor environmental stress by N. In general,
the VIP of the samples with good-performingmodels were represented by
the same active regions and with similar contributions in magnitude,



Figure 6. Regression coefficients for each wavelength of the best-performing PLS models. Method R for (a) plant cane and (b) first ratoon. Method MSC-SG for (c)
plant cane and (d) first ratoon.

Figure 7. VIP for each wavelength of the best-performing PLS models. Method R for (a) plant cane and (b) first ratoon. Method MSC-SG for (c) plant cane and (d)
first ratoon.
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which can be attributed to the similar concentrations of Nc in the stages
studied.

With respect to the vegetation indices, those calculated with the
spectral band of 717 nm presented highly influential values. Addition-
ally, the DVI presented the highest values of 2.82 and 2.54 for the plant
cane and first ratoon stages, respectively. The results are in accordance
with Lepine et al. (2016), who found strong correlations between DVI
and N concentration in the canopy.

4. Conclusions

The Nc varied over time in both stages, increasing until180 DAE for
the plant cane stage. In first ratoon, Nc increased until 150 DAH. The
different timing was due to physiological aspects of the plant. In relation
to the spectral response and the influence of N application rate, the
reflectance values were lower in the plant cane than in first ratoon,
mainly due to the effect of the canopy architecture of sugarcane. The
variable application of N generated differences in the NIR plateau
(750–822 nm), where the reflectance was directly proportional to N
application rate.

The results of this study show that the Nc concentration can be
accurately estimated from crude canopy reflectance spectra when the
sugarcane crop is young, with high values of r2 (r2(60DAE) ¼ 0.98,
r2(120DAE) ¼ 0.92, r2(60DAH) ¼ 0.96, r2(90DAH) ¼ 0.98), RPD (RPD(60DAE) ¼
6.65, RPD(120DAE) ¼ 3.68, RPD(60DAH) ¼ 5.32, RPD(90DAH) ¼ 9.55) and
low values of RMSEr (RMSEr(60DAE) ¼ 3.80, RMSEr(120DAE) ¼ 4.49,
RMSEr(60DAH) ¼ 4.35, and RMSEr(90DAH) ¼ 1.16). This indicates that the
reflectance spectra well represented the variations related to the N con-
centration of the leaf component of the canopy. These models allowed us
to identify the effective wavelengths around different regions of the
spectrum (450, 462, 505, 534, 671, 809, and 820 nm) and higher-density
wavelengths of the red-edge region (719, 722, 725, 730, 758, and 760
nm), as well as VIs that consider this region in their calculation, such as
VOGRE and DVI.

From the perspective of agronomic management, good-performing
models for the first stages are critical when deep-root fertilization is
the main method of improving soil fertility. If, however, fertigation is
used, there would be no limitations to using spectral information to guide
the targeted application of fertilizers. The results that relate the canopy
spectral response to the Nc concentration show that it is possible to use
this response to cover the large commercial areas of sugarcane in the
Cauca River Valley and accurately diagnose the N nutrition status of the
crop.

Declarations

Author contribution statement

Aldemar Reyes Trujillo: Conceived and designed the experiments;
Performed the experiments; Analyzed and interpreted the data; Wrote
the paper.

Martha Constanza Daza Torres; Efrain Solarte Rodriguez: Analyzed
and interpreted the data.

Carlos Augusto Galindez: Analyzed and interpreted the data; Wrote
the paper.

Esteban Emilio Rosero García: Contributed reagents, materials,
analysis tools or data.

Fernando Mu~noz Arboleda: Conceived and designed the experiments;
Analyzed and interpreted the data; Contributed reagents, materials,
analysis tools or data.
Funding statement

This work was supported by the Universidad del Valle for funding the
research project “Autonomous aerial system for mapping the N content of
9

a crop using spectral microsensors” and Universidad del Valle and
CENICA~NA (CI-2961).

Data availability statement

The data that has been used is confidential.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abdel-rahman, E.M., Ahmed, F.B., Van Den Berg, M., 2010. Estimation of sugarcane leaf
nitrogen concentration using in situ spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 12,
52–57.

Abdel-Rahman, E.M., Ahmed, F.B., Ismail, R., 2013. Random forest regression and
spectral band selection for estimating sugarcane leaf nitrogen concentration using
EO-1 Hyperion hyperspectral data. Int. J. Rem. Sens. 34 (2), 712–728.

Amaral, L., Molin, J., 2014. The effectiveness of three vegetation indices obtained from a
canopy sensor in identifying sugarcane response to nitrogen. Agron. J. 106 (1),
273–280.

Amaral, L., Molin, J., Portz, G., Finazzi, F., Cortinove, L., 2014. Comparison of crop
canopy reflectance sensors used to identify sugarcane biomass and nitrogen status.
Precis. Agric. 16 (1), 15–28.

Amaral, L., Molin, J., Schepers, J., 2015. Algorithm for variable-rate nitrogen application
in sugarcane based on active crop canopy sensor. Agron. J. 107 (4), 1513–1523.

Andrade, H., Amaral, L., Molin, J., Cantarella, H., 2015. Sugarcane response to nitrogen
rates, measured by a canopy reflectance sensor, 1, 840–848.

Araque, T.,L., Jim�enez, A., 2009. Caracterizaci�on de firma espectral a partir de sensores
remotos para el manejo de sanidad vegetal en el cultivo de palma de aceite. Revista
Palmas 30 (3 SE-Artículos), 63–79. https://publicaciones.fedepalma.org/index.php/
palmas/article/view/1455.

Barbin, D.F., ElMasry, G., Sun, D.-W., Allen, P., 2012. Predicting quality and sensory
attributes of pork using near-infrared hyperspectral imaging. Anal. Chim. Acta 719,
30–42.

Basyouni, R., Dunn, B., 2013. Use of Reflectance Sensors to Monitor Plant Nitrogen Status
in Horticultural Plants. http://dasnr22.dasnr.okstate.edu/docushare/dsweb/Get/
Version-14828/HLA-6719web.pdf.

Botero, J.M., Parra z, L.N., Cabrera, K.R., 2009. Determinaci�on del nivel de nutrici�on
foliar en banano por espectrometría de reflectancia. Rev. Fac. Nac. Agron. Medellín
62 (2), 5089–5098. http://revistas.unal.edu.co/index.php/refame/article/vie
w/24919.

Bulcock, H.H., Jewitt, G.P.W., 2010. Spatial Mapping of Leaf Area index Using
Hyperspectral Remote Sensing for Hydrological Applications with a Particular Focus
on Canopy Interception, pp. 383–392.

CENICA~NA, 2018. Características agron�omicas y de productividad de la variedad
Cenica~na Colombia (CC) 01-1940.

Cordon, G.B., 2009. M�etodos �opticos no destructivos para monitoreo de salud vegetal.
Universidad de Buenos Aires, Argentina. http://digital.bl.fcen.uba.ar/gsdl-282/cgi-b
in/library.cgi?a¼d&c¼tesis&d¼Tesis_4575_Cordon.

Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., Cho, M., 2008. LAI
and chlorophyll estimation for a heterogeneous grassland using hyperspectral
measurements. ISPRS J. Photogrammetry Remote Sens. 63 (4), 409–426.

Franco, H.C.J., Otto, R., Faroni, C.E., Vitti, A.C., Almeida de Oliveira, E.C.,
Trivelin, P.C.O., 2011. Nitrogen in sugarcane derived from fertilizer under Brazilian
field conditions. Field Crop. Res. 121 (1), 29–41.

Hansen, P.M., Schjoerring, J.K., 2003. Reflectance measurement of canopy biomass and
nitrogen status in wheat crops using normalized difference vegetation indices and
partial least squares regression. Remote Sens. Environ. 86 (4), 542–553.

Henrich, V., Krauss, G., G€otze, C., Sandow, C., 2012. IDB. In: Entwicklung einer
Datenbank für Fernerkundungsindizes, 4. AK Fernerkundung, Bochum, 5. 10. 2012.
www.indexdatabase.de.

Huber, S., Kneubühler, M., Psomas, A., Itten, K., Zimmermann, N.E., 2008. Estimating
foliar biochemistry from hyperspectral data in mixed forest canopy. For. Ecol. Manag.
256 (3), 491–501.

Katsoulas, N., Elvanidi, A., Ferentinos, K.P., Kacira, M., Bartzanas, T., Kittas, C., 2016.
Crop reflectance monitoring as a tool for water stress detection in greenhouses : a
review. Biosyst. Eng. 151, 374–398.

le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J.-Y., Br�eda, N., Genet, H.,
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